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Abstract:  

Our research deals with finding the probability and the optimal strategy that a chief of 
a tribe would find the girl with the highest IQ, in order to marry her. We propose to the chief 
the “k-strategy” to achieve his goal. We eliminate some of the possible candidates, regardless 
of their IQ and then choose the best option higher than the rejected ones. If he does not choose 
the woman with the highest IQ, he will not get married this year. 
 
The statement of the problem: 

The chief of a certain tribe decided that he is ready to get married. In his opinion, the 
best match for him would be the smartest lady from his tribe. However, the tribal council 
decides that he must also show some sign of wisdom, at least by proving that he is a good 
strategist. 

Each of the 73 single ladies in this tribe was given a certain IQ test, which was 
approved a priori by the council. All the IQ scores received by the ladies were different from 
each other. Each score was written on a piece of paper and then placed inside an opaque ball. 
All the 73 balls were placed and shuffled inside an urn. The chief's goal is to find the ball 
containing the highest IQ score, that corresponds to his best match. 

The tribal chief randomly (uniformly) picks a ball from the urn and sees the score 
written inside the ball. He must decide whether to keep this score or reject it. If he decides to 
keep it and this number is the highest score in that urn, then he will get to marry the smartest 
lady. Otherwise, if the score is not the largest, he will remain unmarried this year. 
If the chief rejects the score written inside the picked ball, then this score is removed from the 
urn. He randomly picks a new ball from the urn, and the previous procedure is repeated. He 
can either accept the score written inside this ball or refuse it. The procedure of picking balls 
continues like this until either he accepts one score or else the balls are exhausted. If there is 
only one ball left in the urn, the chief has to accept the score written inside of it. 

The chief does not know the scores, nor their distribution inside the urn. At each 
moment, he only knows how many balls remain in the urn and the scores that he rejected. 
Moreover, he cannot change his mind and go back to choose a score that he has already 
rejected. 



How should the chief of the tribe proceed to have the best chance of getting married 
this year? What is the probability of success with this strategy? If the number of ladies in the 
tribe is much larger that 73, is there any reasonable hope of finding the smartest wife? 
 
Section 1.  Elements of probability 
 
Probability is a branch of mathematics concerning events and numerical descriptions of how 
likely they are to occur.  The word probability has several meanings in ordinary conversation, 
which are particularly important for the development and applications of the mathematical 
theory of probability. One is the interpretation of probabilities as relative frequencies, for 
which simple games involving coins, cards, dice, and roulette wheels provide examples. In 
loose terms, we say that the probability of something happening is 0.25, if, when the 
experiment is repeated often under the same conditions, the stated result occurs 25% of the 
time. 
 
A random experiment is a process by which an observation is made; an observation is referred 
to as an outcome. The outcome of a random experiment cannot be determined before it occurs, 
but it may be any one of several possible outcomes. The outcomes are considered to be 
determined by chance.  In our paper, we will confine our discussion to cases where there are a 
finite number of equally likely outcomes. For example, if a coin is tossed, there are two 
equally likely outcomes: heads (H) or tails  (T). If a die is tossed, there are six equally likely 
outcomes: 1, 2, 3, 4, 5, 6. 
The sample space (denoted here by S) is the set of all possible outcomes of a random 
experiment. 
An event is (or random event) a set of outcomes of an experiment or a subset of the sample 
space.  A simple event (or elementary event) is an event that cannot be decomposed. Events 
are usually denoted by capital letters, such as A, B, C, … 
 
The probability of an event numerically quantifies the chances of that event to occur. We shall 
denote the probability of event A as P(A). In the classical theory of probability (finite sample 
space with equally probable simple events), the probability of an event A is defined as ratio 
between the number of favourable cases to A to the number of cases in the sample space. We 
write this mathematically as: 
 

P(A)  =  
number of elements in A
number of elements in S

=  
card(A)
card(S)

.  

 
Probabilities will always be between (and including) 0 and 1. A probability of 0 means that the 
event is impossible. A probability of 1 means an event is guaranteed to happen. A probability 
close to 0 means the event is "not likely" and a probability close to 1 means the event is 
"highly likely" to occur.  
If A is any event, the event that A does not occur is called the complement of A, denoted by A�. 
The complementary event of is made of all the outcomes that are not associated with the event 
but are in the sample space  Furthermore,  
 

P(A�)  =  1 −  P(𝐴𝐴). 



If A and B  are two events defined on the sample space S; the union of A and B (written as 𝐴𝐴 ∪
𝐵𝐵) is the event that either A or B occurs or both occur. 
 
If A and B  are two events defined on the sample space S; the intersection of A and B (written 
as 𝐴𝐴 ∩ 𝐵𝐵) is the event that both A and B occur simultaneously. We have that 
 

 
�(� ∪�)  =  �(�)  +  �(�)  −  �(� ∩�). 

 
 
 
We say that the events A and B are mutually exclusive events (written as 𝐴𝐴 ∩ 𝐵𝐵 = ∅) if the two 
events have no outcomes in common.  If A and B are mutually exclusive events, then  
 

�(� ∪�)  =  �(�)  +  �(�). 
 
The existence or absence of an event can provide clues about other events. In general, an event 
is deemed dependent if it provides information about another event. An event is deemed 
independent if it offers no information about other events. In other words, a dependent event 
can only occur if another event occurs first. We shall write this mathematically. 
If A and B are events of S (P(B) ≠ 0), and the occurrence of event A is dependent on the 
occurrence of event B (written A/B), then A is conditional on B and the probability of A given 
B is: 

𝐏𝐏(𝐀𝐀 |𝐁𝐁) =
𝐏𝐏(𝐀𝐀 ∩ 𝐁𝐁)
𝐏𝐏(𝐁𝐁)

. 

Similarly, if P(𝐴𝐴) ≠ 0) and the occurrence of event B is dependent on the occurrence of event 
A (written B/A), then B is conditional on A and the probability of B given A is: 
 

P(𝐵𝐵 |𝐴𝐴) =
P(𝐴𝐴 ∩ 𝐵𝐵)

P(𝐴𝐴)
. 

From the previous two relations we conclude that 
 

𝐏𝐏(𝐀𝐀 ∩ 𝐁𝐁) = 𝐏𝐏(𝐁𝐁)𝐏𝐏(𝐀𝐀|𝐁𝐁) = 𝐏𝐏(𝐀𝐀)𝐏𝐏(𝐁𝐁|𝐀𝐀). 
 
Two events, A and B, are independent if the occurrence of A does not affect the probability of 
the occurrence of B; otherwise the events are said to be dependent.  If A and B are two  
independent events, then P(𝐴𝐴 |𝐵𝐵) = P(𝐴𝐴) and P(𝐵𝐵 |𝐴𝐴) = P(𝐵𝐵), and thus 
 

P(𝐴𝐴 ∩ 𝐵𝐵) = P(𝐴𝐴)P(𝐵𝐵). 
 
If the event A may depend on more events, say 𝐵𝐵1, 𝐵𝐵2,…,𝐵𝐵𝑘𝑘, that form a partition of the 
sample space (that is, the union of them is the sample space and they are mutually exclusive 
events), then we have (the law of total probability formula): 

𝑃𝑃(𝐴𝐴)  =  𝑃𝑃(𝐵𝐵1) ∙ 𝑃𝑃(𝐴𝐴|𝐵𝐵1) +  𝑃𝑃(𝐵𝐵2) ∙ 𝑃𝑃(𝐴𝐴|𝐵𝐵2)+. . . +𝑃𝑃(𝐴𝐴|𝐵𝐵𝑘𝑘) ∙ 𝑃𝑃(𝐵𝐵𝑘𝑘) = �𝑃𝑃(𝐴𝐴|𝐵𝐵𝑖𝑖)𝑃𝑃(𝐵𝐵𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

. 



If the occurrence of event A is dependent on the occurrence of event B, then the occurrence of 
event A is also dependent on the occurrence of event 𝐵𝐵� . Then, B and 𝐵𝐵�  form a partition of the 
sample space. In this particular case, the law of total probability formula becomes: 
 

𝑃𝑃(𝐴𝐴)  = 𝑃𝑃(𝐵𝐵) ∙ 𝑃𝑃(𝐴𝐴|𝐵𝐵)  +  𝑃𝑃(𝐵𝐵�) ∙ 𝑃𝑃(𝐴𝐴|𝐵𝐵�). 
 
Section 2.  The solution of the problem  
 
For generality, let us consider an urn that has n indistinguishable balls. In our problem, 𝑛𝑛 =
 73. Also, let us denote by 𝐵𝐵𝑛𝑛 R  the ball containing the highest number inside an urn having 𝑛𝑛 
balls. We shall call it the winning ball. 
 
Since we do not know anything about the distribution of the numbers written inside the balls, a 
reasonable strategy is to wait until a certain number of balls (say, 𝑘𝑘)  are withdrawn, without 
accepting any of them, and then accept the ball containing the highest number that appears 
thereafter, if that exists. 
Obviously, the number 𝑘𝑘 is an integer between 0 and 𝑛𝑛 − 1. If 𝑘𝑘 = 0, then we accept the first 
ball drawn, while if 𝑘𝑘 = 𝑛𝑛 − 1, then we accept the last ball from the urn. We shall call this 
strategy as the “k-strategy”. 
 
Our aim is to find the probability of success using the “k-strategy”. We call a success when the 
tribal chief accepts the ball with the highest number inside it.  
If 𝑛𝑛 is small, one can find the best "k-strategy" by hand.  We start by considering simple cases 
(𝑛𝑛 = 2,𝑛𝑛 = 3,𝑛𝑛 = 4, . ..), to see whether there is a pattern. 
 
𝑻𝑻𝑻𝑻𝑻𝑻 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒏𝒏 = 𝟐𝟐U  
 

There are 2! = 2 possible permutations of the 2 balls corresponding to the 2 possible 
extraction configurations of the 2 balls from the urn. As we want all the possible extraction 
configurations to be equally probable, we assume that the extraction continues until all the 
balls are extracted from the urn, even when the winning ball is accepted.  If this assumption is 
not considered, then one cannot calculate the classical probability of a success. In the 
extraction configurations below, we shall mark with red the balls that were rejected by default 
and with green the winning ball. 
 If the chief accepts the first extracted ball, then there are no balls rejected by default. We 

calculate  the probability of winning with the "0-strategy". Out of the total 2 extraction 
configurations, only 1 of them has the ball containing the highest number on the first 
position. The favourable configuration is (2,1). 

Thus, the probability of success with the "0-strategy" is  �0,2 =  1!
2!

=  0.5. 
 Suppose that the chief rejects the first extracted ball, and then accepts the ball that 

contains a number higher than all previously extracted numbers. The favourable winning 
configuration for the "1-strategy" is  (1,2). 

Then the probability of winning with the "1-strategy" is  �1,2 =  1
2

=  0.5. 
Summarizing, the probabilities of success with the "k-strategy" (with 2 balls) are: 



 

 
 
 
 
We see that either of  "0-strategy" or  "1-strategy" is optimal for the case of 2 balls. 
 
𝑻𝑻𝑻𝑻𝑻𝑻 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒏𝒏 = 𝟑𝟑  
 

There are 3! = 6 possible  permutations of the 3 balls corresponding to 6 possible 
extraction configurations of the 3 balls from the urn. As we want all the possible extraction 
configurations to be equally probable, we assume that the extraction continues until all the 
balls are extracted from the urn, even when the winning ball is accepted.  If this assumption is 
not considered, then one cannot calculate the classical probability of a success. In the 
extraction configurations below, we shall mark with red the balls that were rejected by default 
and with green the winning ball. 
 If the chief accepts the first extracted ball, then there are no balls rejected by default. We 

calculate  the probability of winning with the "0-strategy". Out of the total 3! extraction 
configurations, only 2! of them have the ball containing the highest number on the first 
position. The favourable configurations are: 

 
(3,1,2),   (3, 2, 1) 

 
Thus, the probability of success with the "0-strategy" is 𝑃𝑃0,3 =  2!

3!
=  0.33. 

 Suppose that the chief rejects the first extracted ball, and then accepts the ball that 
contains a number higher than all previously extracted numbers. The favourable winning 
configurations for the "1-strategy" are as follows: 

 
(2, 1, 3),  (1, 3, 2),  (2, 3, 1) 

Then the probability of winning with the "1-strategy" is  �1,3 =  3
6

=  0.50.  
 Suppose that the chief rejects the first two extracted balls, and then accepts the ball that 

contains a number higher than all previously extracted numbers. The favourable winning 
configurations for the "2-strategy" are as follows: (1, 2, 3), (2, 1, 3). 

Then the probability of winning with the "2-strategy" is  �2,3 =  2
6

=  0.33. 
Summarizing, the probabilities of success with the "k-strategy" (with 3 balls) are: 

 
 
 
 

We conclude that the "1-strategy" is optimal for the case of 3 balls. 
 

𝑘𝑘 𝑘𝑘 = 0 𝑘𝑘 =  1 

��,2 0.50 0.50 

k 𝑘𝑘 =  0 𝑘𝑘 =  1 k =  2 

��,3 0.33 0.50 0.33 



𝑻𝑻𝑻𝑻𝑻𝑻 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒏𝒏 = 𝟒𝟒 
 
As all the four numbers are different from each other, the ranks of the numbers written inside 
the balls are 1, 2, 3 and 4. There are 4! = 24  possible  permutations of the 4 balls 
corresponding to 24 possible extraction configurations of the 4 balls from the urn. As we want 
all the possible extraction configurations to be equally probable, we assume that the extraction 
continues until all the balls are extracted from the urn, even when the winning ball was 
accepted.  If this assumption is not considered, then one cannot calculate the classical 
probability of a success. In the extraction configurations below, we shall mark with red the 
balls that were rejected by default and with green the winning ball. 

• If the chief accepts the first extracted ball, then there are no balls rejected by default. 
We calculate  the probability of winning with the "0-strategy". Out of the total 4! 
extraction configurations, only 3! of them have the ball containing the highest number 
on the first position. The favourable configurations are: 

 
(𝟒𝟒, 1,2,3), (𝟒𝟒, 1,3,2), (𝟒𝟒, 2,1,3), (𝟒𝟒, 2,3), (𝟒𝟒, 3,1,2), (𝟒𝟒, 3,2,1). 

 
            Thus, the probability of success with the "0-strategy" is 

𝑃𝑃0,4 =
3!
4!

= 0.25 = 𝑃𝑃(𝐵𝐵4 = 1). 
 

• Suppose that the chief rejects the first extracted ball, and then accepts the ball that 
contains a number higher than all previously extracted numbers. The favourable 
winning configurations for the "1-strategy" are as follows: 
 

(1, 2,2,3), (1,𝟒𝟒, 3,2), (2,𝟒𝟒, 2,3), (2,𝟒𝟒, 3,2), (3,𝟒𝟒, 1,2), (3,𝟒𝟒, 2,1),  
(2,1,𝟒𝟒, 3), (3,1,𝟒𝟒, 2), (3,2,𝟒𝟒, 1), (3,1,2,𝟒𝟒), (3,2,1,𝟒𝟒),  

 
Then the probability of winning with the "1-strategy" is 𝑃𝑃1,4 = 11

24
= 0.25    

• Suppose that the chief rejects the first two extracted balls, and then accepts the ball that 
contains a number higher than all previously extracted numbers. The favourable 
winning configurations for the "2-strategy" are as follows: 
 

(1, 2,𝟒𝟒, 3), (2,1,𝟒𝟒, 3), (1, 3,𝟒𝟒, 2), (3,1,𝟒𝟒, 2), (2, 3,𝟒𝟒, 1), 
 (3,2,𝟒𝟒, 1), (1, 3, 2,𝟒𝟒), (3,1, 2,𝟒𝟒), (2, 3, 1,𝟒𝟒), (3, 2, 1,𝟒𝟒).  

 
Then the probability of winning with the "1-strategy" is 𝑃𝑃1,4 = 10

24
= 0.4167.    

 
• Suppose that the chief rejects the first three extracted balls, and then must accept the 

fourth (last). The favourable winning configurations for the "3-strategy" are as follows: 
 

(1, 2,3,𝟒𝟒), (2,1,3,𝟒𝟒), (1, 3, 2,𝟒𝟒), (3,1,2,𝟒𝟒), (2, 3,1,𝟒𝟒), (3,2,1,𝟒𝟒).  
 
Then the probability of winning with the "1-strategy" is 𝑃𝑃1,4 = 6

24
= 0.2500.    

 



• Summarizing, the probabilities of success with the "k-strategy" (𝑘𝑘 ∈ {0, 1, 2, 3}) with 4 
balls are: 

 
𝑘𝑘 𝑘𝑘 = 0 𝑘𝑘 = 1 𝑘𝑘 = 2 𝑘𝑘 = 3 
𝑃𝑃𝑘𝑘,4 0.2500 0.4583 0.4167 0.2500 

 
We see that the "1-strategy" is optimal for the case of 4 balls. 
 
𝑻𝑻𝑻𝑻𝑻𝑻 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒏𝒏 ≥ 𝟓𝟓 
 
However, for 𝑛𝑛  large we cannot count all the probabilities in this way, as the calculation 
becomes cumbersome. 
Let us denote by 𝑊𝑊𝑛𝑛.𝑘𝑘 the event of success (win) when using the “k-strategy” for an urn 
containing 𝑛𝑛 ≥ 2 balls. 
 
Before starting to pick up any ball, the ball containing the highest number inside could be any 
of the 𝑛𝑛 balls.  As the tribal chief chooses randomly the balls from the urn, in an uniform 
manner,  each of the n balls has the same chance of being drawn. The winning ball can be any 
of the balls in the urn, with equal probability. If we consider that all the extracted balls are 
arranged orderly in a line, then the winning ball 𝐵𝐵𝑛𝑛  can be any of these balls, with equal 
probability. Thus, 𝐵𝐵𝑛𝑛 R  is uniformly distributed on the set {1, 2, . . . , 𝑛𝑛}. This means that the 
probability that the highest number will be seen at extraction 𝑖𝑖 Ris 1

𝑛𝑛
 . If we denote by Bn = 𝑖𝑖 

the event that the winning ball is at extraction 𝑖𝑖 (Ei), then we write mathematically as follows: 
 

                                             P(Bn = 𝑖𝑖) =
1
𝑛𝑛

,
for all 𝑖𝑖 ∈ {1, 2, . . . , n}.                                          (1)  

 
The probability of success with the “k-strategy” depends on the moment when the winning 
ball is extracted. We denote by P(𝑊𝑊𝑛𝑛.𝑘𝑘|Bn = 𝑖𝑖)  the probability of winning with the “k-
strategy” given that the winning ball was picked at extraction 𝑖𝑖.  
Using the law of total probability, we can write 
 

P(Win) = �P(winning ball is at Ei) × P(Win | winning ball is at Ei).
n

i=1

 

 
In words, at each extraction of rank 𝑖𝑖, the probability of success depends on the event that the 
highest number is written inside the extracted ball. 
Mathematically, we write this as follows: 
 

                                  P(𝑊𝑊𝑛𝑛.𝑘𝑘) = �P(Bn = 𝑖𝑖) · P(𝑊𝑊𝑛𝑛.𝑘𝑘|Bn = 𝑖𝑖).                                              (2)
n

i=1

 

 



However, if the ball containing the highest number was already picked (but not accepted) at 
extraction 𝑖𝑖 ≤ 𝑘𝑘  (that is, this ball was among the 𝑘𝑘 balls that we let go),  then the “k-strategy” 
is a failure. Using conditional probabilities, we write this as 
 

                                        P(𝑊𝑊𝑛𝑛.𝑘𝑘|Bn = 𝑖𝑖) = 0,
for all 𝑖𝑖 ∈ {1, 2, . . . , k}.                                       (3) 

 
If the ball containing the highest number is the one extracted at rank 𝑘𝑘 + 1, then this ball has 
the highest number written inside among all the balls extracted so far. Based on the “k-
strategy”, the chief accepts this ball, and thus the “k-strategy” will be successful with 
probability 1.  This choice is schematically represented in Figure 2. The red balls are the ones 
that the chief let go, the big green ball is the winning ball. 

 
 
If the winning ball is the ball to be chosen from the urn at extraction k + 2, then the “k-
strategy” will be successful if and only if one of the first 𝑘𝑘 balls (the ones that were 
automatically rejected) contains a number that is the highest among the first 𝑘𝑘 + 1 balls. With 
other words, among the first 𝑘𝑘 ‘let go’ balls there is at least one number which is higher that 
the 𝑘𝑘 + 1  extracted ball. If that is the case, then the the 𝑘𝑘 + 1  extracted ball will not be 
accepted, and there are chances that the chief can win with the 𝑘𝑘 + 2 extracted ball. There are 
𝑘𝑘 favourable cases and 𝑘𝑘 + 1 possible cases, thus the probability of winning at extraction 𝑘𝑘 +
2 is then  

P(𝑊𝑊𝑛𝑛.𝑘𝑘|Bn = 𝑘𝑘 + 2)  =  
𝑘𝑘

𝑘𝑘 + 1
. 

 

 
 

Using similar arguments, if the winning ball is the ball to be chosen from the urn at extraction 
𝑖𝑖 >  𝑘𝑘, with 𝑖𝑖 ∈  {𝑘𝑘 + 1,𝑘𝑘 +  2, . . . , 𝑛𝑛}, then “k-strategy” will be successful if and only if one 
of the automatically rejected k balls contains a number that is the highest among the first 
extracted 𝑖𝑖 − 1  balls. In this way, there are 𝑘𝑘  favourable cases out of  𝑖𝑖 − 1  possible 
extractions, and the probability of success given that the winning ball is drawn at extraction i 
is 

                      P(𝑊𝑊𝑛𝑛.𝑘𝑘|Bn = 𝑖𝑖)  =  
𝑘𝑘

𝑖𝑖 − 1
, for any i ∈  {k + 1, k +  2, . . . , n}.                         (4) 

 
From the relations (1), (2), (3) and (4), we get that 
 



                                         P(𝑊𝑊𝑛𝑛.𝑘𝑘) =
1
n
· �

𝑘𝑘
𝑖𝑖 − 1

=
k
n
· �

1
𝑖𝑖 − 1

.                                          
n

i=k+1

(5) 
 

n

i=k+1

 

The analysis of the probability for success  
 
Let us denote simply by 𝑃𝑃𝑛𝑛.𝑘𝑘 = P(𝑊𝑊𝑛𝑛.𝑘𝑘) the probability of winning using the “k-strategy” for 
an urn containing 𝑛𝑛 balls.  
From the relation (5), for a fixed 𝑛𝑛, we have that 

                                𝑃𝑃𝑛𝑛.𝑘𝑘 =
k
n

 · �
1

𝑖𝑖 − 1
=

k
n

 ·�
1
n

 ·
𝑛𝑛
𝑗𝑗

.
n−1

j=k

                                                           (6)    
n

i=k+1

 

 
Let us consider the following partition of the interval �𝑘𝑘

𝑛𝑛
, 1�: 

  

�
𝑘𝑘
𝑛𝑛

<
𝑘𝑘 + 1
𝑛𝑛

<  
𝑘𝑘 + 2
𝑛𝑛

< . . . <  
𝑛𝑛 − 1
𝑛𝑛

< 1�. 

 
We observe that the following sum, 

�
1
n

 ·
n
j

n−1

j=k

=
1
n

 ·�
n
j

n−1

j=k

 

represents the left Riemann sum approximation, corresponding to the above partition, of the 
integral 

�
1
x

1

𝑘𝑘
𝑛𝑛

dx = ln(1) − ln �
𝑘𝑘
𝑛𝑛
� =  −ln �

𝑘𝑘
𝑛𝑛
�. 

Therefore, by taking into account the expression (6), we get that, for n large enough,  

Pn.k =  −
k
n
⋅ ln �

𝑘𝑘
𝑛𝑛
�. 

 
Let us consider the function 𝑓𝑓: (0,∞) → [0, 1], given by  𝑓𝑓(𝑥𝑥) = −𝑥𝑥 ⋅ 𝑙𝑙𝑙𝑙(𝑥𝑥). 
As we are trying to maximize the chances (the probability Pn.k), we want to find the maximum 
value for the function f. Firstly, we search for the critical points. 

𝑓𝑓′(x) = −ln(x) − x ⋅
1
x

= −ln(x) − 1 = 0, 

From where we see that the unique critical point is x = 1
e
. 

As the second derivative of the function f  at this point is equal to - e < 0, we conclude that 
x = 1

e
 is a maximum point for f. Thus, the maximum value of the function f  is 

𝑓𝑓 �
1
e
� =

1
e

 ≃  0.368. 
 

Thus, the maximum probability of winning using the “k-strategy” for an urn containing 𝑛𝑛 balls 
is 0.368, meaning about 37% chances of winning.  



In conclusion, we should reject the first 37% of the balls in the urn, and then move on to the 
next best one. Thus, for n large enough, the optimal number of balls that the chief will draw 
initially without stopping at any of them is �n

e
�+ 1. 

In the particular case of an urn containing 73 balls,  the number of balls that we should reject 
following the “k-strategy” is 

𝑘𝑘 =  �
n
e
� + 1 =  �

73
e
� + 1 = 27. 

 
After that rejecting the first 27 ball, we shall choose the ball with the highest number extracted 
till then.  
For 𝑛𝑛 = 73, the graph of this probability is drawn in Figure 1. We observe that this function is 
concave, with the maximum of this probability achieved for 𝑘𝑘 =  27, and the corresponding 
probability is 𝑃𝑃73,27 = 0.3722. This fact can also be observed from the Table 1. 
This means that the chief must let go the first 27 extracted balls, without accepting any of 
them (regardless the value of numbers written inside them), and then, at the subsequent 
extractions, he will accept the ball that contains the highest number among all the numbers 
extracted so far. If this number exists at any extraction of rank higher than  27, then the chief 
has a winning strategy. On the other side, if this number does not exist (that is, at any 
extraction of a rank higher than 27, the chief cannot find a number larger than the previous 
extracted numbers), then the chief loses.  
 
 

 
Figure 1. The winning probability as a function of 𝑘𝑘 for 𝑛𝑛 = 73 

 
 
Table 1 contains the optimal value of 𝑘𝑘 for the "k-strategy" and the corresponding probability  
𝑃𝑃𝑛𝑛.𝑘𝑘  for different values of 𝑛𝑛.   



Figure 2 displays the values of k for the optimal "k-strategy" and the corresponding probability  
𝑃𝑃𝑛𝑛.𝑘𝑘  for different values of 𝑛𝑛. We see that, as 𝑛𝑛 increases, the values of 𝑘𝑘 also increase and the 
optimal probability for the "k-strategy" decreases. We see that the value of the optimal 
probability converges to a non-zero positive value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.  The optimal value for 𝑘𝑘 and the optimal probability of winning for various numbers 
of balls in the urn. 
 
In support to our demonstration presented above, we wrote a C++ code, in which we followed 
the solution. The code is displayed at the end of this paper. 
 

Number of balls n Optimal strategy k Optimal 
probability 

3 1 0.5000 
4 1 0.4583 
5 2 0.4333  
6 2 0.4278 
7 2 0.4143 
8 3 0.4098 
9 3 0.4060 
10 3 0.3987  
11 4 0.3984 
12 4 0.3955 
13 5 0.3923 
14 5 0.3917 
15 5 0.3894 
16 6 0.3881 
17 6 0.3873 
18 7 0.3854 
19 7 0.3850 
20 7 0.3842 
… … … 
70 26 0.3724 
71 26 0.3724 
72 26 0.3723 
73 27 0.3722 



 
 
Figure 2.  The evolution of the optimal value for 𝑘𝑘 and the optimal probability of winning for 
various numbers of balls in the urn. 
 
Section 3.  Conclusion  
 
In this paper, we propose to the chief the following “k-strategy” to achieve his goal. The 
optimal strategy is as follows: the chief must reject out of hand the first 27 balls, and then 
select the first ball (if it appears) that has a number inside that is higher than all of the numbers 
that were rejected before.  
For a general 𝑛𝑛 (number of balls in the urn), the strategy is as follows. The chief must let go 
the first 𝑘𝑘 extracted balls, without accepting any of them (regardless the value of numbers 
written inside them), and then, and the subsequent extractions, he must accept the ball that 
contains the highest number among all the numbers extracted so far, if it exists.  
If this number exists at any extraction of a rank higher than 𝑘𝑘, then the chief has a winning 
strategy. If he cannot find a number (at an extraction after the extraction  𝑘𝑘) that is larger than 
the previous numbers extracted, then the chief loses.  
For large 𝑛𝑛, we have found that the optimal value for k in the "k-strategy" is �n

e
� + 1, which 

means the chief has to wait until about 37% of the balls have been extracted, and then he must 
select the first ball with the highest number among the extracted ones, if it exists. The chances 
of success are also about 37%. 
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#include <iostream> 
#include <cstdlib> 
 
using namespace std; 
const double e = 2.71828182; // Constant e 
int n, cnt, cntt, k; // Global variables 
 
int main() 
{ 
    srand(time(NULL)); // Initialize random number generator 
     
    // Read the number of women in the tribe and the number of iterations 
    cout << "Enter the number of women in the tribe: "; 
    cin >> n; 
    cout << "Enter the number of iterations: "; 
    cin >> cnt; 
    cout << endl; 
     
    cntt = cnt; // Save a copy of the number of iterations 
     
    while(cnt){ 
        int v[10001] = {0}; // Declaration and initialization of IQ vector 
        int maxe = 0, maxi = 0; // Variables for maximum IQ 
        bool ok = false; // Variable for selection check 
 
        // Random generation of IQs for each woman 
        for(int i = 0; i < n; i++){ 
            v[i] = rand() % 200; 
            maxi = max(maxi, v[i]); // Update maximum IQ 
        } 
         
        // Calculation of the maximum IQ from the first n/e women 
        for(int i = 0; i <= (n - 1) / e; i++) 
            maxe = max(maxe, v[i]); 
             
        // Displaying the IQs of the women 
        cout << "The IQ of the women in the tribe are as follows: "; 
        for(int i = 0; i < n; i++) 
            cout << v[i] << ' '; 
         
        // Displaying the maximum IQ from the first n/e women 
        cout << endl << "Maximum IQ from the first " << n << "/e woman is: " << maxe << endl; 
        cout << "The value he chooses according to the procedure is: "; 
         
        // Choosing the woman with the highest IQ among the remaining ones 
        for(int i = n / e + 1; i < n; i++){ 
            if(v[i] > maxe){ 
                cout << v[i]; 
                if(v[i] == maxi)    k++; // Count if the selected woman has the highest IQ in the tribe 
                ok = true; 
                break; 
            } 
            if(i == n - 1)  cout << v[i]; 
        } 
         
        // Displaying the maximum IQ of all women in the tribe 
        cout << endl << "The maximum value of all the women is: " << maxi << endl << endl; 
        cnt--; // Decrement the number of iterations 
    } 
     
    // Displaying the percentage of women chosen with the highest IQ out of the total iterations 
    cout << k * 1.0 / cntt * 100 << '%'; 
} 



 


