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1. The Tower of Hanoi problem 

 

The Tower of Hanoi (also called ’Tower of Brahma’ or ’Lucas' Tower’ and sometimes pluralized as ’Towers’), 

invented by the French mathematician Édouard Lucas in 1883, is a mathematical game or puzzle, which consists 

of three rods and a number of disks of different sizes, which can be moved onto any rod. The puzzle starts with 

the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape, 

the purpose of the game being the replacement of the disks from a rod to another one, following the next rules:    

 

i. Only one disk can be moved at a time. 

ii. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack 

or on an empty rod. 

iii. No larger disk may be placed on top of a smaller disk. 

 

The research topic consisted in the mathematical determination of the number of minimum displacements 

required to move n disks from any situation A to any other situation B. Additionally, the situation of displacement 

in which a disk can be placed only on the neighboring pillar was also taken into consideration.  

 

2. Methods used and research results 

 

Two methods have been used to provide the mathematical result of the minimum number of movements required 

to displace n disks from any given situation to another one.  

Firstly, the method of induction, after observing a certain numerical pattern in the studied examples, followed by a 

C++ program created for the situation in which the disks can be placed only on the neighboring pillar. 
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After using the induction method to verify the correctness of the formula, a statement was made, more exactly 

that the number of required moves = 2n – 1, where n = number of disks (for the general case), and that the number 

of required moves is 
𝟑𝐧−𝟏

𝟐
, where n = number of disks (following the additional rule, which states that disks can be 

placed only on the neighboring pillar), whereas the algorithm provided the result for the second case, featuring the 

additional rule.  

3. Research work 

 

After explaining the purpose of the game of the Hanoï towers, we worked on determining the number of 

minimum displacements required to move n disks from any situation A to any other situation B. In addition to the 

rules given, a new restriction was added: one can only move a disk to the nearest rod. 

The induction method 

After analyzing the variation of the number of movements depending on the number of disks, the base step of the 

induction method led to the following observed pattern in numbers. As one may observe, the general rule of the 

game is: number of required moves = 2n – 1, where n = number of disks.  

 

 

 

 

 

 

 

 

 

By using the information in the table above, the base step of the induction method was completed.  

 

• an = 2n – 1  

I. If   P(n): an = 2n – 1 , ∀ n ∈ ℕ* 

      P(1): a1= 1    „T”                        

      P(2): a2= 3    „T” 

 

Number of DISKS Number of MOVES 

1 1 

2 3 

3 7 

4 15 

5 31 

6 63 

7 127 

8 255 

9 511 

10 1023 
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For the inductive step, a form of writing the general number of moves was pointed out, which is an= 2 an-1 + 1, 

where an stands for the number of moves ( for example, 15 = 2∙7+1 or 31 = 2∙15+1), an-1 being the number of 

moves needed for the number of disks smaller with one unit than the one in discussion. Hence, for the inductive 

step,  an+1= 2 an + 1 .  

In order to verify whether the base step proved the statement to be true for the initial value, the inductive step for 

the first case (in the first case, we considered the general rules of the game, where a disk can be moved on any of 

the 2 pillars next to it) followed as it seems:  

 

 

II. If   P(1), P(2), ...., P(n)  „T” ⇒(?)  P(n+1)   „T”    

  an+1 =(?) 2n+1 –1 

  an+1= 2 an + 1  

= 2 (2n – 1 ) + 1   

 = 2n+1 – 2 + 1  

= 2n+1 –1     

I, II ⇒ an = 2n – 1 , ∀ n ∈ ℕ*  

If the second situation is to be taken into consideration, where the additional rule introduced by the task specifies 

that a disk can only be moved on the pillar right next to it, the numerical pattern that occured in the base step was 

the next one:  

 

 

 

 

 

For the inductive step to be easier to go through, a form of writing the general number of movements was pointed 

out, which is bn  = 3bn-1 +1, where bn stands for the number of moves ( for example, 13 = 3∙4+1 or 40 = 3∙13+1),  

bn-1 being the number of moves needed for the disks with the number smaller with one unit than the one in 

discussion. The inductive step went in the following manner: 

 

• bn = 
𝟑𝐧−𝟏

𝟐
 

P(n): bn=
𝟑𝐧−𝟏

𝟐
, ∀ n ∈ ℕ* 

Number of DISKS Number of MOVES 

1 1 

2 4 

3 13 

4 40 

5 121 
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       bn  = 3bn-1 +1 

      bn-1 = 3bn-2 +1   ∣∙3 

       ... 

       b3 = 3b2 +1     ∣∙3n-3 

       b2 = 3b1 +1     ∣∙3n-2 

 + 

    bn+ 3bn-1+...+ b3 ∙3n-3 + b2 ∙3n-2   = 

 = 3bn-1 +  bn-2 ∙32+...+ b2 ∙3n-2+ b1 ∙3n-1  +  1+3+...+ 3n-2  

 

⇒ bn = b1∙3n-1 + 1∙
𝟑𝐧−𝟏−𝟏

𝟐
 

        bn = 3n-1+ 
𝟑𝐧−𝟏−𝟏

𝟐
 

        bn =
𝟐∙𝟑𝐧−𝟏 + 𝟑𝐧−𝟏 −𝟏 

𝟐
 

        bn = 
𝟑𝐧−𝟏

𝟐
, ∀ n ∈ ℕ* 

 

C++  Algorithm 

 

The following algorithm solves the problem of finding the number of moves needed to get from any given state to 

any other given state of the disks, with the restriction that a disk can only be moved to a neighboring pillar. The 

time complexity is linear. If you are not familiar with algorithms and C++, you can skip the algorithm and only 

read the proof! 

 

#include <iostream>  

#define NDISKS 15 

using namespace std; 

int n,state1[NDISKS+5],state2[NDISKS+5],powers[NDISKS+5],sol; 

int index(int state[NDISKS+5]){ 

    bool reversed=false; 

    int ind=0; 

    for(int i=n;i>=1;i--){ 

        if(!reversed){ 

            if(state[i]==2){ 

                ind+=2*powers[i-1]; 
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  }else if(state[i]==1){ 

                ind+=powers[i-1]; 

                reversed=true; 

            } 

        }else{ 

            if(state[i]==0){ 

                ind+=2*powers[i-1]; 

            }else if(state[i]==1){ 

                ind+=powers[i-1]; 

                reversed=false; 

            } 

        } 

    } 

    return ind; 

} 

int main(){ 

    cin>>n; 

    powers[0]=1; 

    for(int i=1;i<=n;i++){ 

        powers[i]=3*powers[i-1]; 

    } 

    for(int i=1;i<=n;i++){ 

        cin>>state1[i]; 

        state1[i]--; 

    } 

    for(int i=1;i<=n;i++){ 

        cin>>state2[i]; 

        state2[i]--; 

    } 

    sol=index(state1)-index(state2); 

    if(sol<0){ 

        sol=-sol; 

    } 

    cout<<sol; 

} 

 

Proof of correctness 
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The input contains an integer n ≤ 15, the number of disks, and two arrays, state1[] and state2[], state1[i] denotes 

the rod on which the i-th disk is situated in the first state, state2[i] denotes the rod on which the i-th disk is 

situated in the second state; state1[i], state2[i] є{1,2,3}. 

The output contains a single number sol, the number of steps needed to reach state 2 from state 1. 

Let’s encode any given state as a base 3 number (because there are three rods, the first one will be represented as 

0, the second one as 1 and the third one as 2), with n digits, one digit for each disk. 

 

For instance, if there are 4 disks, the first(the lightest) is on the second rod, the second and the fourth (the 

heaviest) ones are on the first rod and the third one is on the third rod. If we write this representation from right to 

left, the state can be encoded as “0201”. Observe that the i-th leftmost digit in the base 3 number shows us on 

which rod is the n-i+1-th disk placed, the i-th digit is state [n-i+1]-1. In our algorithm, we subtract 1 from each 

element of both arrays, although this isn’t needed, to maintain the base 3 number analogy. 

 

To reach state ”222..2” from state “000..0” we need to pass through exactly 3^n different states (this can be 

proved with mathematical induction). As there are exactly 3^n base 3 numbers with n digits, there is an unique 

solution to reach any given state (base 3 number) from another given state (base 3 number). 

Therefore, each base 3 number has an unique index, that indicates the number of steps needed to reach that state 

from state “000..0”. Index is a bijective function. 

 

For example, index(“000”)=0, index(“111”)=13, index(“222”)=26, index(“001”)=1. In this example, the function 

parameter is a base 3 number, but in our algorithm, the parameter is an array that contains the reversed digits of a 

base 3 number. 

The number of steps between two states is |index (state1) - index (state2)|. In the presented algorithm, index(state) 

computes the index of any given state in O(n) time complexity. 

 

In the following, we are going to explain how the index function works. The state[] parameter is an array that 

contains the reversed digits of a base 3 number (as we previously stated, the i-th digit is state[n-i+1]-1). We iterate 

through the elements of the array, from the biggest disk to the smallest one(from the beginning of the base 3 

number to the end of the base 3 number), and we count all the previous states. The Boolean variable “reversed” is 

true if the current number of “1” is odd and is false otherwise.  

 

If the current number of “1” is even, we add 2*3^(i-1) for a “2”, because there are 2*3^(i-1) previous states for 

which the first n-i+1 digits of the base 3 numbers are equal to the first n-i digits of the base 3 number 

corresponding to the given state and the n-i+1 digit is smaller than “2”. We add 3^(i-1) for a ”1” and 0 for a “0”, 

with similar explanations. If the current number of “1” is odd, the meanings of “2” and “0” are reversed: we add 

2*3^(i-1) for a “0” and nothing for a “2”. To make this clearer, we will show the indexes of all the 3-digit base 3 

numbers. Remember, in our algorithm the function parameter is an array with reversed base 3 number digits, but 

in this example, the numbers are not reversed! 

 

 

index(000)=0 

 

index(122)=9 

 

index(200)=18 
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index(001)=1 index(121)=10 index(201)=19 

index(002)=2 index(120)=11 index(202)=20 

index(012)=3 index(110)=12 index(212)=21 

index(011)=4 index(111)=13 index(211)=22 

index(010)=5 index(112)=14 index(210)=23 

index(020)=6 index(102)=15 index(220)=24 

index(021)=7 index(101)=16 index(221)=25 

index(022)=8 index(100)=17 index(222)=26 

 

Alternative representation 

 

The game can be represented by a graph, the nodes representing distributions of disks and the edges representing 

moves. The graph of 3 disks, as represented in Fig.1 and Fig.2, resembles a fractal (Sierpiński triangle) in the 

repetitive case of the game (if distributions from one side to another were approved within a move, as if it would 

be a circular system), but our case can be visualized by erasing the unused edges.  

The graph shows that from every arbitrary distribution of disks, there is exactly one shortest way to move all disks 

onto one of the three pegs. In the following graphs, the states are encoded with letters instead of digits: “a” is the 

first pillar, “b” is the second and “c” is the third. The i-th letter corresponds to the i-th disk, in ascending order. 

 

 

 

  

  

Fig.1 Undirected graph, the nodes representing distributions 

of disks and the edges representing moves, for three disks, in 

the first case 

 

 

Fig.2 Undirected graph, the nodes representing distributions 

of disks and the edges representing moves, for three disks, 

in the second case 
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4. Conclusion 

The solution to the problem ‘The Tower of Hanoi’ can be seen from 2 angles, the first point of view being the 

mathematical one (proven through the induction method, for both cases suggested by the research topic), and the 

second point of view being the one based on an algorithm designed to make the visualization of the task more 

practical.  Both mathematically and computer-wise, solving the problem involves analyzing moves of the disks, as 

well as streamlining the process. Processing the situation, mathematically we have proved that the smallest 

number of steps is rendered by the formula 2n – 1. To solve the second part of the problem, finding the number of 

moves between any 2 given states, where we can only move the disks to a neighboring pillar, we also coded an 

algorithm in C++ that has linear complexity (O(n)). If the mathematical part fixed our idea, the computer part 

made our work easier and more elaborate, giving the correct answer through a virtual interface. 

 


