
This article is written by students. It may present omissions and imperfections,
reported as far as possible by our reviewers in the editing notes.

MATh.en.JEANS 2019 -2020 Colegiul Național „Emil Racoviță” Cluj-Napoca
Page 1

Tower of Hanoi

Year 2019 – 2020

Aprilia Moldovan, Teodora Pașca, students in the 11thgrade

Ioana Gabor, Adelin Bojan, Luca Apahidean, students in the 10th grade

Teachers: Ariana-StancaVăcărețu, Valentina Vasilescu, Adrian Andrea

School: Colegiul Național ,,EmilRacoviță”

Researcher : Lorand Parajdi, Babeș-Bolyai University, 1 Kogălniceanu Str., Cluj-Napoca, Romania

1. The Tower of Hanoi problem

The Tower of Hanoi (also called ’Tower of Brahma’ or ’Lucas' Tower’ and sometimes pluralized as ’Towers’),

invented by the French mathematician Édouard Lucas in 1883, is a mathematical game or puzzle, which consists

of three rods and a number of disks of different sizes, which can be moved onto any rod. The puzzle starts with

the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape,

the purpose of the game being the replacement of the disks from a rod to another one, following the next rules:

i. Only one disk can be moved at a time.

ii. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack

or on an empty rod.

iii. No larger disk may be placed on top of a smaller disk.

The research topic consisted in the mathematical determination of the number of minimum displacements

required to move n disks from any situation A to any other situation B. Additionally, the situation of displacement

in which a disk can be placed only on the neighboring pillar was also taken into consideration.

2. Methods used and research results

Two methods have been used to provide the mathematical result of the minimum number of movements required

to displace n disks from any given situation to another one.

Firstly, the method of induction, after observing a certain numerical pattern in the studied examples, followed by a

C++ program created for the situation in which the disks can be placed only on the neighboring pillar.

This article is written by students. It may present omissions and imperfections,
reported as far as possible by our reviewers in the editing notes.

MATh.en.JEANS 2019 -2020 Colegiul Național „Emil Racoviță” Cluj-Napoca
Page 2

After using the induction method to verify the correctness of the formula, a statement was made, more exactly

that the number of required moves = 2n – 1, where n = number of disks (for the general case), and that the number

of required moves is
𝟑𝐧−𝟏

𝟐
, where n = number of disks (following the additional rule, which states that disks can be

placed only on the neighboring pillar), whereas the algorithm provided the result for the second case, featuring the

additional rule.

3. Research work

After explaining the purpose of the game of the Hanoï towers, we worked on determining the number of

minimum displacements required to move n disks from any situation A to any other situation B. In addition to the

rules given, a new restriction was added: one can only move a disk to the nearest rod.

The induction method

After analyzing the variation of the number of movements depending on the number of disks, the base step of the

induction method led to the following observed pattern in numbers. As one may observe, the general rule of the

game is: number of required moves = 2n – 1, where n = number of disks.

By using the information in the table above, the base step of the induction method was completed.

• an = 2n – 1

I. If P(n): an = 2n – 1 , ∀ n ∈ ℕ*

 P(1): a1= 1 „T”

 P(2): a2= 3 „T”

Number of DISKS Number of MOVES

1 1

2 3

3 7

4 15

5 31

6 63

7 127

8 255

9 511

10 1023

This article is written by students. It may present omissions and imperfections,
reported as far as possible by our reviewers in the editing notes.

MATh.en.JEANS 2019 -2020 Colegiul Național „Emil Racoviță” Cluj-Napoca
Page 3

For the inductive step, a form of writing the general number of moves was pointed out, which is an= 2 an-1 + 1,

where an stands for the number of moves (for example, 15 = 2∙7+1 or 31 = 2∙15+1), an-1 being the number of

moves needed for the number of disks smaller with one unit than the one in discussion. Hence, for the inductive

step, an+1= 2 an + 1 .

In order to verify whether the base step proved the statement to be true for the initial value, the inductive step for

the first case (in the first case, we considered the general rules of the game, where a disk can be moved on any of

the 2 pillars next to it) followed as it seems:

II. If P(1), P(2),, P(n) „T” ⇒(?) P(n+1) „T”

 an+1 =(?) 2n+1 –1

 an+1= 2 an + 1

= 2 (2n – 1) + 1

 = 2n+1 – 2 + 1

= 2n+1 –1

I, II ⇒ an = 2n – 1 , ∀ n ∈ ℕ*

If the second situation is to be taken into consideration, where the additional rule introduced by the task specifies

that a disk can only be moved on the pillar right next to it, the numerical pattern that occured in the base step was

the next one:

For the inductive step to be easier to go through, a form of writing the general number of movements was pointed

out, which is bn = 3bn-1 +1, where bn stands for the number of moves (for example, 13 = 3∙4+1 or 40 = 3∙13+1),

bn-1 being the number of moves needed for the disks with the number smaller with one unit than the one in

discussion. The inductive step went in the following manner:

• bn =
𝟑𝐧−𝟏

𝟐

P(n): bn=
𝟑𝐧−𝟏

𝟐
, ∀ n ∈ ℕ*

Number of DISKS Number of MOVES

1 1

2 4

3 13

4 40

5 121

This article is written by students. It may present omissions and imperfections,
reported as far as possible by our reviewers in the editing notes.

MATh.en.JEANS 2019 -2020 Colegiul Național „Emil Racoviță” Cluj-Napoca
Page 4

 bn = 3bn-1 +1

 bn-1 = 3bn-2 +1 ∣∙3

 ...

 b3 = 3b2 +1 ∣∙3n-3

 b2 = 3b1 +1 ∣∙3n-2

 +

 bn+ 3bn-1+...+ b3 ∙3n-3 + b2 ∙3n-2 =

 = 3bn-1 + bn-2 ∙32+...+ b2 ∙3n-2+ b1 ∙3n-1 + 1+3+...+ 3n-2

⇒ bn = b1∙3n-1 + 1∙
𝟑𝐧−𝟏−𝟏

𝟐

 bn = 3n-1+
𝟑𝐧−𝟏−𝟏

𝟐

 bn =
𝟐∙𝟑𝐧−𝟏 + 𝟑𝐧−𝟏 −𝟏

𝟐

 bn =
𝟑𝐧−𝟏

𝟐
, ∀ n ∈ ℕ*

C++ Algorithm

The following algorithm solves the problem of finding the number of moves needed to get from any given state to

any other given state of the disks, with the restriction that a disk can only be moved to a neighboring pillar. The

time complexity is linear. If you are not familiar with algorithms and C++, you can skip the algorithm and only

read the proof!

#include <iostream>

#define NDISKS 15

using namespace std;

int n,state1[NDISKS+5],state2[NDISKS+5],powers[NDISKS+5],sol;

int index(int state[NDISKS+5]){

 bool reversed=false;

 int ind=0;

 for(int i=n;i>=1;i--){

 if(!reversed){

 if(state[i]==2){

 ind+=2*powers[i-1];

This article is written by students. It may present omissions and imperfections,
reported as far as possible by our reviewers in the editing notes.

MATh.en.JEANS 2019 -2020 Colegiul Național „Emil Racoviță” Cluj-Napoca
Page 5

 }else if(state[i]==1){

 ind+=powers[i-1];

 reversed=true;

 }

 }else{

 if(state[i]==0){

 ind+=2*powers[i-1];

 }else if(state[i]==1){

 ind+=powers[i-1];

 reversed=false;

 }

 }

 }

 return ind;

}

int main(){

 cin>>n;

 powers[0]=1;

 for(int i=1;i<=n;i++){

 powers[i]=3*powers[i-1];

 }

 for(int i=1;i<=n;i++){

 cin>>state1[i];

 state1[i]--;

 }

 for(int i=1;i<=n;i++){

 cin>>state2[i];

 state2[i]--;

 }

 sol=index(state1)-index(state2);

 if(sol<0){

 sol=-sol;

 }

 cout<<sol;

}

Proof of correctness

This article is written by students. It may present omissions and imperfections,
reported as far as possible by our reviewers in the editing notes.

MATh.en.JEANS 2019 -2020 Colegiul Național „Emil Racoviță” Cluj-Napoca
Page 6

The input contains an integer n ≤ 15, the number of disks, and two arrays, state1[] and state2[], state1[i] denotes

the rod on which the i-th disk is situated in the first state, state2[i] denotes the rod on which the i-th disk is

situated in the second state; state1[i], state2[i] є{1,2,3}.

The output contains a single number sol, the number of steps needed to reach state 2 from state 1.

Let’s encode any given state as a base 3 number (because there are three rods, the first one will be represented as

0, the second one as 1 and the third one as 2), with n digits, one digit for each disk.

For instance, if there are 4 disks, the first(the lightest) is on the second rod, the second and the fourth (the

heaviest) ones are on the first rod and the third one is on the third rod. If we write this representation from right to

left, the state can be encoded as “0201”. Observe that the i-th leftmost digit in the base 3 number shows us on

which rod is the n-i+1-th disk placed, the i-th digit is state [n-i+1]-1. In our algorithm, we subtract 1 from each

element of both arrays, although this isn’t needed, to maintain the base 3 number analogy.

To reach state ”222..2” from state “000..0” we need to pass through exactly 3^n different states (this can be

proved with mathematical induction). As there are exactly 3^n base 3 numbers with n digits, there is an unique

solution to reach any given state (base 3 number) from another given state (base 3 number).

Therefore, each base 3 number has an unique index, that indicates the number of steps needed to reach that state

from state “000..0”. Index is a bijective function.

For example, index(“000”)=0, index(“111”)=13, index(“222”)=26, index(“001”)=1. In this example, the function

parameter is a base 3 number, but in our algorithm, the parameter is an array that contains the reversed digits of a

base 3 number.

The number of steps between two states is |index (state1) - index (state2)|. In the presented algorithm, index(state)

computes the index of any given state in O(n) time complexity.

In the following, we are going to explain how the index function works. The state[] parameter is an array that

contains the reversed digits of a base 3 number (as we previously stated, the i-th digit is state[n-i+1]-1). We iterate

through the elements of the array, from the biggest disk to the smallest one(from the beginning of the base 3

number to the end of the base 3 number), and we count all the previous states. The Boolean variable “reversed” is

true if the current number of “1” is odd and is false otherwise.

If the current number of “1” is even, we add 2*3^(i-1) for a “2”, because there are 2*3^(i-1) previous states for

which the first n-i+1 digits of the base 3 numbers are equal to the first n-i digits of the base 3 number

corresponding to the given state and the n-i+1 digit is smaller than “2”. We add 3^(i-1) for a ”1” and 0 for a “0”,

with similar explanations. If the current number of “1” is odd, the meanings of “2” and “0” are reversed: we add

2*3^(i-1) for a “0” and nothing for a “2”. To make this clearer, we will show the indexes of all the 3-digit base 3

numbers. Remember, in our algorithm the function parameter is an array with reversed base 3 number digits, but

in this example, the numbers are not reversed!

index(000)=0

index(122)=9

index(200)=18

This article is written by students. It may present omissions and imperfections,
reported as far as possible by our reviewers in the editing notes.

MATh.en.JEANS 2019 -2020 Colegiul Național „Emil Racoviță” Cluj-Napoca
Page 7

index(001)=1 index(121)=10 index(201)=19

index(002)=2 index(120)=11 index(202)=20

index(012)=3 index(110)=12 index(212)=21

index(011)=4 index(111)=13 index(211)=22

index(010)=5 index(112)=14 index(210)=23

index(020)=6 index(102)=15 index(220)=24

index(021)=7 index(101)=16 index(221)=25

index(022)=8 index(100)=17 index(222)=26

Alternative representation

The game can be represented by a graph, the nodes representing distributions of disks and the edges representing

moves. The graph of 3 disks, as represented in Fig.1 and Fig.2, resembles a fractal (Sierpiński triangle) in the

repetitive case of the game (if distributions from one side to another were approved within a move, as if it would

be a circular system), but our case can be visualized by erasing the unused edges.

The graph shows that from every arbitrary distribution of disks, there is exactly one shortest way to move all disks

onto one of the three pegs. In the following graphs, the states are encoded with letters instead of digits: “a” is the

first pillar, “b” is the second and “c” is the third. The i-th letter corresponds to the i-th disk, in ascending order.

Fig.1 Undirected graph, the nodes representing distributions

of disks and the edges representing moves, for three disks, in

the first case

Fig.2 Undirected graph, the nodes representing distributions

of disks and the edges representing moves, for three disks,

in the second case

This article is written by students. It may present omissions and imperfections,
reported as far as possible by our reviewers in the editing notes.

MATh.en.JEANS 2019 -2020 Colegiul Național „Emil Racoviță” Cluj-Napoca
Page 8

4. Conclusion

The solution to the problem ‘The Tower of Hanoi’ can be seen from 2 angles, the first point of view being the

mathematical one (proven through the induction method, for both cases suggested by the research topic), and the

second point of view being the one based on an algorithm designed to make the visualization of the task more

practical. Both mathematically and computer-wise, solving the problem involves analyzing moves of the disks, as

well as streamlining the process. Processing the situation, mathematically we have proved that the smallest

number of steps is rendered by the formula 2n – 1. To solve the second part of the problem, finding the number of

moves between any 2 given states, where we can only move the disks to a neighboring pillar, we also coded an

algorithm in C++ that has linear complexity (O(n)). If the mathematical part fixed our idea, the computer part

made our work easier and more elaborate, giving the correct answer through a virtual interface.

