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Abstract. The aim of this article is to study a new operation ⊕ that given two finite sets yields
a new finite set whose elements correspond to all the possible sums between the elements of the two
separate sets. In this paper, we will focus on the case in which the operation is iterated k times for
the same finite set in order to determine the cardinality of the set at each iteration. We will find a
connection with the coin changing problem by considering the finite set as a coin system that can be
used to express any natural value. Given a coin system, we will search for the minimum number of
necessary coins to obtain any integer value. Eventually we will determine a series of conditions that
must be satisfied by the coins of the system with which it will be possible to get any integer value with
the greedy algorithm.

1 The operation and the algebraic structure
We started our research with the study of a new binary operator called sum ⊕ defined on the set of
finite families of integers.
The A⊕B set contains all the results of all the possible sums between the elements of the two sets.
Example. Let us consider two numerical sets A = {2, 5} and B = {3, 6, 7}. We define

A⊕B = {5, 8, 9, 11, 12}

It is possible to build an algebraic structure on the finite parts of the set of the natural numbers
Fin(N) and the operation sum ⊕.
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It is easy to prove that the algebraic structure (Fin(N),⊕) has the following properties:

• Commutative property.

• Associative property.

• Neutral element N = {0}.

Only the element {0} has its own inverse element that is {0}. In fact {0} ⊕ {0} = {0}. For any other
element of Fin(N) there is not an inverse element. So the algebraic structure (Fin(N),⊕) is not a
group but an abelian monoid.

2 The cardinality
One of first step of our work has been the analysis of the cardinality of the A(n)k set.
Let A(n)1 = {a1, a2, a3, ..., an} be the starting set (with ai ̸= 0 ∀ 1 ≤ i ≤ n). Let us call |A(n)k| the
cardinality of the set obtained by iterating k times (with k ≥ 2) the sum of A(n)1 with itself. For
example:

A(3)1 = {1, 3, 7} ⇒ A(3)2 = {2, 4, 6, 8, 10, 14} ⇒ A(3)3 = {3, 5, 7, 9, 11, 13, 15, 17, 21}

• For n = 1 (that is A(1)1 = {a1}) A(1)k will always consist just ka1 ⇒ |A(1)k| = 1 ∀k ≥ 1.

• For n = 2 then |A(2)k| = k + 1, that is, for every starting set, the cardinality increases with
arithmetic progression of common difference 1. For example:

A(2)1 = {1, 3} ⇒ A(2)2 = {2, 4, 6} ⇒ A(2)3 = {3, 5, 7, 9}

• Such a result has been proved to be true for generic sets of n elements if these are in arithmetic
progression, obtaining that the cardinality still increases with arithmetic progression of common
difference n− 1: |A(n)k| = k(n− 1) + 1.

Theorem 2.1. If A(n)1 = {a, a+d, ..., a+(n−1)d} with n, d, k natural numbers, then |A(n)|k =
k(n− 1) + 1

Proof. We are going to prove that A(n)k = {ka, ka+ d, ..., ka+ k(n− 1)d}. The proof proceeds
by induction on k

For k = 1, A(n)1 = {a, a+ d, ..., a+ (n− 1)d} by definition.
Now we suppose that A(n)k = {ka, ka+ d, ..., ka+ k(n− 1)d}. Then

A(n)k+1 = {ka+ a, ka+ d+ a, ..., ka+ k(n− 1)d+ a+ (n− 1)d}
= {(k + 1)a, (k + 1)a+ d, ..., (k + 1)a+ (k + 1)(n− 1)d}.

Indeed, the lowest element of A(n)k+1 is obtained from the sum of the first element of A(n)k
plus a and the greatest one from the sum of the last element on A(n)k plus a+ (n− 1)d [1] .

So A(n)k = {ka, ka+ d, ..., ka+ k(n− 1)d} and the elements of the set A(n)k are in arithmetic
progression with common difference d and therefore |A(n)k| = k(n− 1) + 1

• Finally, for n ≥ 3 a numeric study has been implemented writing a C++ software that, given the
starting set A(n)1, generates the A(n)k set and calculates its cardinality.
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2.1 n = 3 case

In the n = 3 case we studied various combinations of the starting values of the set through the C++
software and we were able to find some regularities in the possible cardinality progressions. By the
observation of the generated sets, we tried to find analytical relations that describe the cardinality
|A(3)k| as a function of k [2] .
We immediately noticed that there exists a progression with the quickest increase of cardinality. In
this case at every step the increase results to be greater of one unit with respect to the previous one:

|A(3)k| =
k∑

i=0

(i+ 1) =
k+1∑
i=1

i =
1

2
(k + 1)(k + 2), (1)

where the result of the sum can be easily obtained using the Gauss formula. These can be proved
to be equal to the combinations C ′

3;k of 3 elements taken k at a time with repetitions. In fact, by
multiplying and dividing for k! one gets:

|A(3)k| =
k!(k + 1)(k + 2)

2k!
=

(k + 2)!

2k!
=

(3 + k − 1)!

k!(3 + k − 1− k)!
=

(
3+k−1

k

)
= C ′

3;k

On the other hand we also noticed that if certain relation between the elements of the starting set
A(3)1 are verified, the cardinality will not increase with the quickest progression. We tried to guess
the formulas that describe the cardinalities of A(3)k in this cases.
Given A(3)1 = {a1, a2, a3}, the most general condition for which the cardinality doesn’t increases with
the quickest progression has been identified as follows:
if there exist two natural numbers (p, q) = 1 with q < p such that

pa2 = qa1 + (p− q)a3, (2)

the cardinality |A(3)k| exits from the quickest progression at the pth step [3] . From there on it will
always follow an arithmetic progression with common difference equal to the pth increase.
These observations can be summarised in a tree diagram, where the possible values of |A(3)k| are
represented as a function of k. From now on, this graph will be referred to as the cardinality tree.

The upper branch of the tree represents the progression with the quickest increase of cardinality given
by formula (1), the circled numbers are the values of k while the others are the values of |A(3)k|. For
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each branch that starts from the main one the common difference of the arithmetic progression that
yields |A(3)k| is specified. As previously explained, the exit from the main branch verifies at the pth

step if there exist two numbers p and q that satisfy the condition (2).
In the following, the cardinality that one obtains at the kth iteration, exiting from the quickest pro-
gression at the pth step will be referred to as |A(3)k,p|.

• If 2a2 = a1 + a3 (that is the elements of the starting set are in arithmetic progression. . . [4] )
then p = 2, so one exits from the main branch at the 2nd step, obtaining

|A(3)k,2| =
1∑

i=0

(i+ 1) +

k∑
i=2

2 = 1 + 2 + (k − 1)2 = 2k + 1;

• else if 3a2 = 2a1 + a3 or 3a2 = a1 + 2a3 then p = 3 , so one exits from the main branch at the
3rd step, obtaining

|A(3)k,3| =
2∑

i=0

(i+ 1) +

k∑
i=3

3 = 1 + 2 + 3 + (k − 2)3 = 3k;

• else if 4a2 = a1 + 3a3 or 4a2 = 3a1 + a3 then p = 4, so one exits from the main branch at the
4th step, obtaining

|A(3)k,4| =
3∑

i=0

(i+ 1) +

k∑
i=4

4 = 1 + 2 + 3 + 4 + (k − 3)4 = 4k − 2;

• and so on...

Let us suppose that the exit condition is verified at the pth step, where p satisfies the exit condition
(2). In such a case, generalizing the previous results, one obtains:

|A(3)k,p| =
p−1∑
i=0

(i+ 1) +
k∑

i=p

p =

p∑
i=1

i+
k∑

i=p

p =
1

2
p(p+ 1) + [k − (p− 1)]p =

1

2
(2k − p+ 3)p.

On the other hand it can be noticed that the formula above only works if the iteration step is k > p−3
[5] . In the opposite case the formula can be simply corrected by substituting p = k+2, thus obtaining:

|A(3)k,p| = |A(3)k,k+2| =
k∑

i=0

(i+ 1) =
1

2
(k + 1)(k + 2)

that is once again the quickest progression.
To summarize:

• If k > p− 3 then |A(3)k,p| =
p∑

i=1

i+

k∑
i=p

p =
1

2
(2k − p+ 3)p;

• else if k ≤ p− 3 then |A(3)k,p| = |A(k + 2)k| =
n∑

i=0

(i+ 1) =
1

2
(k + 1)(k + 2);

• for p− 3 < k < p both the relations return the same values for cardinality.
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For example let us consider the starting set A(3)1 = {1, 2, 5}. The two natural numbers p = 4, q = 3,
with (4, 3) = 1 satisfy the previous relation (2):

4 · 2 = 3 · 1 + (4− 3) · 5

• if k < 4:

|A(3)1| =
1

2
(1 + 1)(1 + 2) = 3, |A(3)2| =

1

2
(2 + 1)(2 + 2) = 6, |A(3)3| =

1

2
(3 + 1)(3 + 2) = 10

• else if k ≥ 4:

|A(3)4| =
1

2
· (2 · 4− 4 + 3) · 4 = 14, |A(3)5| =

1

2
· (2 · 5− 4 + 3) · 4 = 18, ...

2.2 n > 3 case

In the n = 3 case it has been proved that the progression with the quickest increase of cardinality is
given by the combinations with repetition of n elements of length k:

|A(n)k| = C ′
n;k.

Such a result can be proved to be still valid in the n > 3 cases. In fact the quickest increase in
cardinality will always be given by the maximum number of combinations of n elements of length k,
but when some of these are identical the cardinality will not increase with the quickest progression.
The range of cardinality progressions that can occur in such cases, together with the conditions under
which these will happen, can be very large and will not be further investigated in this work.
On the other hand, the slower increase has already been proved to be obtained if the elements of the
starting set A(n)1 are in arithmetic progression, and results to be still in arithmetic progression of
common difference n− 1:

|A(n)k| = k(n− 1) + 1

Ultimately we have that |A(n)k| will always be bounded by the slowest and the quickest progression:

(n− 1)k + 1 ≤ A(n)k ≤ C ′
n;k.

3 From the operation to the coin changing problem
The analysis of the ⊕ operation let us study the so-called coin changing problem, that consists in
representing a given value V with the minimum number of coins that belong to a given finite set of
coin denominations.
Starting with the A(2)1 = {a1, a2} set the iterations must assume the form

A(2)2 = {2a1, a1 + a2, 2a2}

A(2)3 = {3a1, 2a1 + a2, a1 + 2a2, 3a2}

...

A(2)k = {(ka1, (k − 1)a1 + a2, ..., a1 + (k − 1)a2, ka2}

that is all the elements of A(2)k can be written as

(k − p)a1 + pa2, p = 0, ..., k.

The problem of finding the minimum number of coins needed to decompose a given value V , can
therefore be reduced to find the first A(2)k set in which the value itself appears: the number of coins
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needed will then be equal to the corresponding iteration k.
For example, to write the value 12 with the coin system

A(2)1 = {2, 5},

by iterating the operation one obtains

A(2)2 = {4, 7, 10}

A(2)3 = {6, 9, 12, 15}

12 ∈ A(2)3 so the minimal number of coins needed to write 12 is 3 (12 = 2 + 5 + 5).
On the other hand to build a coin system we need to know what kind of numbers do we have to use.
Firstly we considered all the multiples of 0, 01 euros.

x ∈ Q+
0 | x = h · 1

100
h ∈ N0 [6]

The coin system then becomes

A =
{ a0
100

,
a1
100

,
a2
100

, ...,
an
100

}
with a0 < a1 < ... < an non-zero natural numbers.
Then we noticed that operating with fractions like an/100 is equivalent to considering just the numer-
ator of the fraction an which is by definition a natural number.
Let us consider an example. If we want to express 1 euro just with 0, 02 coins we will need 50 coins.

1 =
2

100
· 50

That is equivalent to
100 = 2 · 50

So we will consider only those coins whose value is a natural number.

A = {a0, a1, a2, ..., an} ∈ N0

with a0 < a1 < ... < an non-zero natural numbers.

4 The geometric method
We searched for a method to find the decomposition of a given value V by using an initial set of coins
A(n)1 = {a1, a2, a3, ..., an}, according to the coin changing problem.
We tried a geometric approach to determine the set S = {x1, x2, ...xn}t of integer coefficients such
that

V = x1a1 + x2a2 + ...+ xnan

4.1 n = 2 case

In this case, we have a starting set A(2)1 = {a1, a2} with a1 < a2.
We have to look for x1 and x2, two integer coefficients such that a given V is

V = x1a1 + x2a2

There must exist a value of k such that V ∈ A(2)k, and all the elements of this set can be written as:

(k − p)a1 + pa2, p = 0, 1, ..., k
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From the tree (section 2) we can see that k is the sum of the coefficients:

x1 + x2 = k, (3)

so k ≥ x1 e k ≥ x2.
So we build a (k, x2) cartesian plane. Solving V = a1x1 + a2x2 with respect to x1 one obtains:

x1 =
V − a2x2

a1
(4)

Substituting it in (3), we got the final equation

x2 =
ka1 − V

a1 − a2
=

a1
a1 − a2

· k − V

a1 − a2
(5)

that represents a straight line in the (k, x2) plane.
By intersecting this straight line with the bisector k = x2, we get:

k∗ =
V

a2

Let kmin be the minimum integer value such that kmin ≥ k∗.
One can now calculate x2 from (5), by substituting k = kmin. If x2 is an integer, we can calculate x1
from (3) and the decomposition is given.
In case x2 is not an integer number, we have to increase kmin by one unit and repeat the search until
x2 is an integer number.

An example: Starting from A(2)1 = {2, 5}, we try to express, for example, V = 28 as a combination
of the elements of the starting set. Let us calculate k∗. According to (3) and to (5)x2 = −2

3
k +

28

3
x2 = k

⇒ k∗ =
28

5
= 5, 6

Moreover, taking kmin = 6 gives the non-integer value x2 = 16/3. So we have to try with another
integer value, k = kmin + 1 = 7 but it gives back the non-integer value x2 = 14/3. If, finally,
k = 7 + 1 = 8, it results x2 = 12/3 = 4 which is integer, so the solution is acceptable. According (3),
we find x1 = k − x2 = 8− 4 = 4.
This means that 28 = 4 · 2 + 4 · 5, so this value can be obtained with a minimum of 4 + 4 = 8 coins.
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4.2 n = 3 case

We tried to extend the method from dimension 2 to 3. Let A(3)1 = {1, a2, a3} be the starting set,
with a1 = 1 and 1 < a2 < a3. Such a choice, which is needed in order to obtain all the possible values,
gives us the advantage to greatly simplify the problem.
So now we have to find 3 integer coefficient x1, x2 and x3 to write V as a linear combination:

V = x1 + a2x2 + a3x3. (6)

Similarly to the previous case, we know that it must exist a value k for which V ∈ A(3)k, that provides
the constraint:

x1 + x2 + x3 = k. (7)

Solving (6) with respect to x1 one obtains:

x1 = V − a2x2 − a3x3.

Substituting it in (7), we got the final equation

V − a2x2 − a3x3 + x2 + x3 = k, (8)

that represents a plane in the (k, x2, x3) space.
By intersecting this plane with the two planes x2 = k, x3 = k we get:

k∗ =
V

a2 + a3 − 1
.

Let kmin be the minimum integer value such that kmin ≥ k∗.
One can now calculate x2 from (8) obtaining:

x2 =
V − k + (1− a3)x3

a2 − 1
.

The algorithm proceeds now as follows:

• starting from k = kmin, and decreasing x3 from k to 0, search for the first value that yields a
non negative integer x2;

• if no legit x3 can be found, increase k := k + 1 and restart;
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• else if a couple (x3, x2) of non negative integers can be found calculate the corresponding x1
from (7);

• if x1 is also a non negative integer, the decomposition for V has been obtained;

• else if no legit set (x3, x2, x1) of non negative integers can be found, increase k := k + 1 and
restart.

Example A(3)1 = {1, 2, 5} and V = 37.

Using this algorithm, we have found:

k∗ =
37

2 + 5− 1
=

37

6
≃ 6, 17 ⇒ kmin = 7

In the following table are shown the computed values (k, x2, x3) and the condition for x1.

k x3 x2 x1
7 7 2 < 0

7 6 6 < 0

7 5 10 < 0

7 4 14 < 0

7 3 18 < 0

7 2 22 < 0

7 1 26 < 0

7 0 30 < 0

8 8 < 0 —-
8 7 1 0

⇒ 37 = 7 · 5 + 1 · 2 + 0 · 1, k = 7 + 1 = 8

5 The research for the coin system
We first tried to build a coin system S such that it is possible to express any natural We begin with
some definitions.

Definition 5.1. A coin system S is a finite set of natural numbers 0 < a1 < a2 < a3 < ... < an.

Definition 5.2. Given a coin system S and a natural number x, we call representation of x under S,
indicated with RS(x), a possible sum of elements of S that yields x.

Definition 5.3. Given a representation RS(x), the size | RS(x) | of the representation is the number
of coins used in it.

The first idea could be to choose a set with infinite coin denominations: in this case the set S with
which it is possible to write every x ∈ N0 using the least number of coins is

S∞ = N0 | ∀ x ∈ N0, x = n |S∞| = ∞

Obviously it is not possible to build this first set. Another possibility could be to choose a coin system
with only one coin denomination which is the set

S1 = {1} | ∀ x ∈ N0, x = 1 · x |S1| = 1
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Both the coin system are not feasible and so we have to find another way to define the best coin
system.

A possible representation of x under S can be obtained using the greedy method, which consists in
summing the greater coin less than x and the greater coin less than the difference between x and the
first coin and then repeating this procedure until we reach exactly x.

Definition 5.4. Given a coin system S and a natural number x, we call greedy representation of x
under S, indicated with GS(x), the representation obtained with the greedy method.

Example 5.1. Let S = {1, 5, 10, 20, 50} be a coin system and x = 35 the number we have to represent.

GS(35) = 20 + 10 + 5 | GS(35) |= 3

The disadvantage of the greedy method is that it does not always use the minimum number of coins.

Example 5.2. Let us consider the coin system S = {1, 6, 10} and let x be 12. Applying the greedy
method we obtain the following representation:

GS(12) = 10 + 1 + 1 | GS(12) |= 3

In this case it is possible to represent the number 12 with a smaller number of coins:

RS(12) = 6 + 6 | RS(12) |= 2

The coin system S∞ minimizes the number of coins needed but its cardinality is infinite. On the other
hand the coin system S1 has the minimum cardinality but the number of coins needed to represent x
increases significantly as x increases.
So we choose to consider as best coin system the one for which the greedy method uses the minimum
number of coins. Even if it does not always yield the representation with the smallest size, we still
choose this definition of best because in this way we have a clear algorithm to follow in order to get
the representations of a certain x under different coin systems and compare them.
Therefore we call this coin system canonical.

Definition 5.5. A coin system S is canonical if the number of coins used in the representation of
every number x under S calculated with the greedy method is less than the number of coins used in
any other representation of x under S.

| GS(x) |<| RS(x) | ∀x ∈ N0, ∀RS(x) ̸= GS(x)

That is the size of GS(x), for all x, is less than the size of RS(x) for all the representations RS(x)
different from the greedy representation.

In order to decide if a coin system is canonical we have to consider all the representations of all
numbers but this is not easy.
For this reason we introduce another definition of canonical that will be used to build the optimal
coin system.

Definition 5.6. A coin system S is ”canonical2” by induction:

• S = {c} is canonical2 for all c ∈ N0;

• S = S′ ∪ {c} is canonical2 iff

{
S′ is canonical2
∀ x > c . | GS(x) | < | GS′(x) |
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With the second definition of canonical it is easier to compare different coin systems because we
always use the same kind of representation that is the greedy representation.

Now our goal is to build a canonical2 coin system and from now on we will use the word canonical
instead of canonical2.
Let us begin by the simplest case: a set with only one element.

Theorem 5.1. The unitary coin 1 must belong to the canonical coin system S in order to represent
any natural number.

Proof. Let us assume that 1 ̸∈ S. If 1 ̸∈ S then the natural number n = 1 cannot be represented with
the coin system S, so 1 must belong to S.

Then S1 = {1} and by definition is canonical.

Now we have to increase the set S by adding another element a. There is no condition on how to
chose a except it must be a natural number greater than one.
In fact we can substitute a−unitary coins with one-a coin. Hence

∀a ∈ N0 | a > 1, ∀x > a | GS2(x) |<| GS1(x) |

which means that S2 is canonical.

Theorem 5.2. The coin system S2 = {1, a} is canonical for any natural number a > 1.

Let us proceed by adding another element b, with b > a, to the set of coins S in a such way that the
coin system is canonical.
We would like to find a test to check if the addition of a natural number b to S2 makes the coin system
canonical. A first result is the following theorem.

Theorem 5.3. Given S3 = {1, a, b} with 1 < a < b natural numbers. If S3 is canonical then b ≥ 2a.

Proof. We assume that a < b < 2a then we can write x = 2a with 2 coins (a+ a).
By hypothesis a < b < 2a so we can use only one b - coin and 2a − b unitary coins and 2a − b is less
then b. Therefore

GS3(2a) = b+ (2a− b) =⇒ | GS3(2a) |= 2a− b+ 1

Moreover 2a − b + 1 > b − b + 1 = 1 then | GS3(x) |= 2a − b + 1 ≥ 2 =| RS3(x) |. Therefore there
exists a representation of x = 2a different from the greedy representation which size is greater than
or equal to the size of the greedy one of x = 2a. Then S3 is not canonical.

Lemma 5.1. Let S2 = {1, a} and S3 = {1, a, b} with 1 < a < b. Let x be a natural number such that
b+ 2 ≤ x ≤ a+ b− 1. If | GS3(x) |<| GS2(x) | then | GS3(x− 1) |<| GS2(x− 1) |.

Proof. By hypothesis x > b so x = b+ (x− b).
By hypothesis V −b ⩽ a−1 so if we want to represent it we can only use unitary coins so | GS3(x−b) |=
x− b. Hence, we obtain that | GS3(x) |= 1+ x− b. Now we write x (using the Euclidean division) as
a sum of a−coins and 1−coins.

x = q · a+ r =⇒ | GS2(x) |= q + r

Therefore the inequality | GS3(x) |<| GS2(x) | can be written as

x− b+ 1 < q + r (9)
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We can proceed in a similar way and express x− 1 with elements of S3.

x− 1 = b+ (x− 1− b)

By hypothesis x−1−b ⩽ a−1 so x−1−b can be represented only with unitary coins so | GS3(x−b−1) |=
x− b− 1.

| GS3(x− 1) |= 1 + V − 1− b = x− b

Again we write x− 1 as a sum of a−coins and 1−coins.

x− 1 = q1 · a+ r1 =⇒ | GS2(x− 1) |= q1 + r1

x− b < q1 + r1 (10)

From (9) we have that x − b < q + r − 1; from (10) we have that x − b < q1 + r1. Now we have to
check if q + r − 1 ⩽ q1 + r1 or not.

q + r − 1 ⩽ q1 + r1 ⇔ aq + ar ⩽ a+ aq1 + ar1

⇔ aq + r + (a− 1)r ⩽ a+ aq1 + r1 + (a− 1)r1

From the previous Euclidean division we know that x = aq+ r and x− 1 = aq1 + r1. By substitution
we obtain that:

x+ (a− 1)r ⩽ a+ x− 1 + (a− 1)r1

(a− 1)r − (a− 1)− (a− 1)r1 ⩽ 0 =⇒ (a− 1)(r − r1 − 1) ⩽ 0 (11)

By hypothesis a > 1 hence r − r1 − 1 must be less than or equal to 0 to satisfy the inequality (11).
Let us consider again the two Euclidean divisions:

x = qa+ r =⇒ V − 1 = qa+ r − 1

x− 1 = q1a+ r1

By transitive property it follows that qa+ r − 1 = q1a+ r1. That is equivalent to

qa− q1a = r1 − r + 1 ⇔ a(q − q1) = r1 + 1− r (12)

We know that q ≥ q1, it follows that a(q − q1) ⩾ 0. We then substitute in (12), leading to

r1 + 1− r ⩾ 0 =⇒ r − r1 − 1 ⩽ 0

So (11) is true, thus if | GS3(V ) |<| GS2(V ) | then | GS3(V − 1) |<| GS2(V − 1) |.

Theorem 5.4. Given S2 = {1, a} and S3 = {1, a, b} with 1 < a < b , | GS3(a+b−1) | <| GS2(a+b−1) |
iff b > a2− a+1− (a− 1)r where r is the remainder of the Euclidean division between (a+ b− 1) and
a.

Proof. The necessary coins to express a + b − 1 with the system S3 are 1b−coin and a − 1 unitary
coins, so | GS3(a + b − 1) |= a. Let us now consider | GS2(a + b − 1) |. We divide a + b − 1 by a in
order to see how many a-coins we need to use.

a+ b− 1 = q · a+ r
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The remainder r is the number of unitary coins needed. It follows that | GS2(a+ b−1) |= q+ r and so
the inequality | GS3(a+ b− 1) |<| GS2(a+ b− 1) | is equivalent to a < q+ r. From this last inequality
we can get to the condition on b.

a < q + r =⇒ a2 < aq + ar =⇒ a2 < aq + r + (a− 1)r

We can notice that aq+ r is equal to a+ b− 1 so we can substitute it in the inequality and obtain the
final condition

b > a2 − a+ 1− (a− 1)r

Theorem 5.5. Given a system of coins S3 = {1, a, b} with 1 < a < b and S2 = {1, a} if | GS3(a+ b−
1) |<| GS2(a+ b− 1) | then S3 is canonical.

Proof. We have already seen that S2 is canonical. Now we have to prove that | GS3(x) | <| GS2(x) |
for all x > b. We are going to consider tree different cases:
Let x denote an integer greater than b.

1. if x is such that b+2 ≤ x ≤ a+b−1 and | GS3(x) | <| GS2(x) | then | GS3(x−1) |< | GS2(x−1) |
This first case has been proven by lemma 5.1. Then, from the hypothesis | GS3(a + b − 1) |
<| GS2(a + b − 1) | we can state that | GS3(x) |<| GS2(x) | for all the natural numbers x
such that b + 2 ≤ x ≤ a + b − 1. Moreover is obvious that | GS3(a + b) |<| GS2(a + b) | and
| GS3(b+1) |<| GS2(b+1) | therefore | GS3(x) |<| GS2(x) | for all x such that b+1 ≤ x ≤ a+ b.

2. if x is such that b + 1 ≤ x ≤ a + b − 1 and | GS3(x) |<| GS2(x) | then | GS3(x + λa) |<
| GS2(x+ λa) | for all the natural numbers λ such that x+ λa ≤ 2b− 1

Let x be such that b ≤ x ≤ a+ b− 1 and λ a natural number such that x+ λa ≤ 2b− 1, we can
state that | GS3(x+ λa) |= λ+ | GS3(x) |. In fact in order to represent x+ λa we can use only
one b-coin, as well as for x, because x+ λa ≤ 2b− 1.
In an analogous way | GS2(x+ λa) |= λ+ | GS2(x) | If x = qa+ r with q and r the quotient and
the remainder of the division x by a then x+ λa = a(q + λ) + r.
So the representations of the natural numbers between a + b and 2b − 1 are based on the
representations of the natural numbers less than a+ b− 1.
Hence the relation | GS3(x) |<| GS2(x) | holds for all the natural numbers x such that b + 1 ≤
x ≤ 2b− 1.

3. if x is such that (k + 1)b + 1 ≤ x + kb ≤ (k + 2)b − 1 and | GS3(x + kb) |<| GS2(x + kb) | then
| GS3(x+ (k + 1)b) |< | GS2(x+ (k + 1)b) | for all the natural numbers k.
The proof proceeds by inductions on k.
If k = 0 we have to prove | GS3(x) |<| GS2(x) | for b+1 ≤ x ≤ 2b− 1, but we have already done
it in the second case.
Now we assume that | GS3(x+ kb) |<| GS2(x+ kb) |. It is clear that | GS3(x+ (k+ 1)b) |= 1+ |
GS3(x+ kb) |.
There exist q1, q2, r1, r2 such that x+ kb = q1a+ r1 and b = q2a+ r2 with r1 < a and r2 < a.

• If r1+r2 < a then x+(k+1)b = (q1+q2)a+(r1+r2) and so | GS2(x+(k+1)b) |= q1+q2+r1+r2
and | GS2(x+ kb) |= q1 + r1.
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Hence, considering that q2 ≥ 1 and r2 ≥ 0,

| GS3(x+ (k + 1)b) |= 1+ | GS3(x+ kb) |< 1+ | GS2(x+ kb) |

= 1 + q1 + r1 < q1 + q2 + r1 + r2 =| GS2(x+ (k + 1)b) |

• If r1 + r2 ≥ a then | GS2(x+ (k + 1)b) |= (q1 + q2 + 1)a+ (r1 + r2 − a).
First of all we can prove that q2 + r2 − a ≥ 0 in fact it is equivalent to a2 ≥ aq2 + r2 +
(a − 1)r2 = b + (a − 1)r2 such as b > a2 − (a − 1)r2. By hypothesis and by the theorem
5.4, b > a2 − (a − 1)(1 + r3) with r3 the remainder of the division of (b − 1) by a. Then
b ≥ a2 − (a− 1)(1 + r3).
The number b can not be a multiple of a because otherwise r2 = 0, and so r1 + r2 < a
leading to r2 = 1 + r3. Then b ≥ a2 − (a− 1)(r2) hence q2 + r2 − a ≥ 0. Therefore

| GS3(x+ (k + 1)b) |= 1+ | GS3(x+ kb) |< 1+ | GS2(x+ kb) |

= 1 + q1 + r1 ≤ q1 + q2 + 1 + r1 + r2 − a =| GS2(x+ (k + 1)b) |

Therefore | GS3(x) |<| GS2(x) | for all x greater than b.

So we obtain this theorem:

Theorem 5.6. Given a coin system S3 = {1, a, b} with 1 < a < b is canonical iff b > a2−a+1−(a−1)r
where r is the remainder of the Euclidean division between (a+ b− 1) and a.

Example 5.3. Let C = {1, 3, 8} be a coin system. The first condition that we have to check is b ≥ 2a
and 8 ≥ 6 so it is ok. Then we verify the second condition on b that is b > a2 − a+ 1− (a− 1)r.

8 > 9− 3 + 1− 2 · 1 = 5

| GS3(10) |= 3 < 4 =| GS2(10) |

Consequently, the coin system C is canonical.

We tried to extend this theorem to four-coin systems and to look for a condition to check in order to
state if the coin system is canonical or not. But we found this counterexample.

Counterexample 5.1 Given S4 = {1, 5, 14, 38} and S3 = {1, 5, 14} we can see that | GS4(c+b−1) |<|
GS3(c+ b− 1) |:

c+ b− 1 = 38 + 14− 1 = 51

GS4(51) = 1 · 38 + 2 · 5 + 3 · 1 =⇒ | GS4(51) |= 6

GS3(51) = 3 · 14 + 1 · 5 + 4 · 1 =⇒ | GS3(51) |= 8

However S4 is not canonical, in fact | GS4(47) |>| GS3(47) |:

GS4(47) = 1 · 38 + 1 · 5 + 4 · 1 =⇒ | GS4(47) |= 6

GS3(47) = 3 · 14 + 1 · 5 =⇒ | GS3(47) |= 4

We have not been able to find a method to verify if a four-coin system is canonical but we proved
some other theorems about particular coins systems.
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5.1 Particular results

We studied some sets of coins and we achieved the following results.

Theorem 5.7. The coin system S = {1, a, b} with 1 < a < b is canonical for every b > a2 − a+ 1.

Proof. By theorem (5.6) we know that the coin system S = {1, a, b} is canonical iff b > a2 − a+ 1−
(a− 1)r, with r the remainder of the euclidean division between b− 1 and a. Given that (a− 1)r ≥ 0
we can say that

a2 − a+ 1− (a− 1)r ≤ a2 − a+ 1

So if b > a2 − a+ 1 then the coin system S = {1, a, b} is canonical.

From this theorem we can understand that for any a > 1 there are infinitely many b that form canonical
coin systems {1, a, b} and so there are infinitely many canonical three-coin systems.

Theorem 5.8. The coin system S = {1, 2, b} is canonical for every b ≥ 4.

Proof. In this case a = 2, so

b > 4− 2 + 1− r =⇒ b > 3− r

The smaller value for r is 0 so the biggest value for 3−r is 3. The condition b > 3−r is always verified
because b must be bigger than 4. Then by theorem (6.3) the coin system S = {1, 2, b} is canonical.

Theorem 5.9. The coin system C = {1, a, ka} with a ∈ N0, a > 1, k ∈ N0, k > 1, is canonical.

Proof. From the theorem (6.3) we obtained that if b is greater than a2 − a+ 1− (a− 1)r with r the
remainder of the division between a+ ka− 1 and a then the coin system considered is canonical. In
this case the remainder r is equal to a− 1 and b = ka so

ka > a2 − a+ 1− (a− 1)(a− 1)

ka > a2 − a+ 1− a2 + 2a− 1

ka > a

which holds for k > 1 and a > 1.

Theorem 5.10. Given S4 = {1, a, b, c} with 1 < a < b < c natural numbers. If S4 is canonical then
c ≥ 2b.

Proof. We suppose by contradiction that b < c < 2b then we can write the number x = 2b with 2
coins (b+ b). The greedy representation uses the coin c and at least another coin. So, as we have seen
in the theorem (5.3), there exists a representation R such that | RS4(x) |≤| GS4(x) | .

Theorem 5.11. Given a system of coins S4 = {1, a, b, c}, S3 = {1, a, b} and m = LCM(b, c), for all
x > c if | GS4(x) |<| GS3(x) | then | GS4(x+m) |<| GS3(x+m) |.

Proof. Let us consider the first inequality. If we want to represent x under S4 we got that

x = q1c+ q2b+ q3a+ r3 =⇒ | GS4(x) |= q1 + q2 + q3 + r3

Given that m is by definition a multiple of c the remainder of the division between m and c is zero.

| GS4(m) |= m

c
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This means that if we add m to x in the representation of x + m the number of c−coins used will
increase.

x+m = q4c+ q2b+ q3a+ r3

| GS4(x+m) |= q4 + q2 + q3 + r3

with q4 = q1+ | GS4(m) |= q1 +
m
c .

Then we consider the representations of x and x+m under S3.

x = q5b+ q6a+ r6 =⇒ | GS3(x) |= q5 + q6 + r6

As in the previous case, given that m is by definition a multiple of b the remainder of the division
between m and b is zero and so we got to the following representation.

x+m = q7b+ q6a+ r6

| GS3(x+m) |= q7 + q6 + r6

with q7 = q5+ | GS3(m) |= q5 +
m
b .

Finally we substitute in the inequality and we find

| GS4(x+m) | = q4 − q1+ | GS4(x) |=
m

c
+ | GS4(x) |

<
m

c
+ | GS3(x) |<

m

b
+ | GS3(x) |=| GS3(x+m) |

The coin system Sn+1 = {1, a, 2a, 3a, ...na} is not canonical. In fact we can see it in the following
example.

Example 5.4. Let S4 = {1, 3, 6, 9} and n ∈ N0 such that n > 3a, for example n = 14.

14 = 9 + 3 + 1 + 1 |GS4(n)| = 4

14 = 6 + 6 + 1 + 1 |RS4(n)| = 4

The coin system made of 1 and a multiples is not canonical because the number of coins used to
express n with the greedy method (GS4(n)) is not less than the number of coins used by another
method (RS4(n)).

It is interesting to notice that even if, as shown before {1, a, ka} is canonical, the set {1, a, 2a, 3a, ..., na}
with a ∈ N0, a > 1, n ∈ N0, n ≥ 3 is not canonical.
However we proved that:

Theorem 5.12. Let S4 = {1, a, b, kb} with S3 = {1, a, b} canonical and k ∈ N, k > 1. Then S4 is
canonical.

Proof. Let x ∈ N such that x > kb,

GS4(x) = q1 · kb+ q2b+ (x− q1 · kb− q2b) =⇒ | GS4(x) |= q1 + q2+ | GS4(x− q1 · kb− q2b) |

GS3(x) = (q1k+q2)·b+(x−(q1k+q2)·b) =⇒| GS3(x) |= q1k+q2+(x−(q1k+q2)·b)+ | GS3(x−q1k·b−q2b) |

Given that | GS4(x − q1 · kb − q2b) |=| GS3(x − q1k · b − q2b) | and k > 1, |GS4(x)| < |GS3(x)| so the
coin system S4 is canonical.
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We give another result:

Theorem 5.13. The coin system Sn+1 = {1, a, a2, ..., an} is canonical for all a > 1.

Proof. Let x ∈ N0 such that x > an,

GSn+1(x) = q · an + (x− q · an) =⇒ | GSn+1(x) |= q+ | GSn+1(x− q · an) |

GSn(x) = qa · (an−1) + (x− q · a(an−1)) =⇒ | GSn(x) |= qa+ | GSn(x− q · a(an−1)) |
Given that | GSn+1(x− q · an) |=| GSn(x− q · a(an−1)) | and a > 1, |GSn+1(x)| < |GSn(x)| so the coin
system Sn+1 is canonical.

6 Comparing different coin systems
We proved that there are infinite canonical coin systems made of three or four elements.
In order to compare them with each other and to define which coin system is the best, we used the
C++ language to create a function, which we have called cost function. The reason is given an initial
set of coins it returns two values: the first one is the mean of coins enabling us to express all the values
from 1 to 100 with the Greedy Method and the second one is the greater number of coins used during
this process.
Through these results we could create a relation between different coin systems and define which is
the best. In particular we tried to compare a coin system made of the first three elements of the Euro
system with a coin system made of the first three elements of the american one.
As shown in the following table these coin systems are not the best if we look at the values coming
from the cost function and also that exists another coin system which has the mean of coins used and
the maximum number of coins used less than the other two coin systems.

S Mean Max

{1, 5, 22} 5.26 7

European {1, 2, 5} 10.7 21

American {1, 5, 10} 7 14

We compared also different coin systems with cardinality equal to four and we found out that there is
an S better than the coin systems made of the first four elements of the Euro and the american coin
system.

S Mean Max

{1, 3, 11, 38} 4.1 5

European {1, 2, 5, 10} 6.2 12

American {1, 5, 10, 25} 4.7 9

This is only the first part of a deeper research: we could continue our study by analysing sets of bigger
cardinality or sets of different cardinality between them. However we recognised that the use of a coin
of 22 or 38 is more laborious and it would make the daily calculations too difficult.

7 Open problems

7.1 Cardinality of n > 3 sets

In the case n = 3 we obtained the formulas for the progression with the quickest increase in cardinality
of the set An and all the other ones that describe the slower progressions one gets exiting from the
main branch of the tree at p-step.
On the other hand for n > 3 only formulas for the quickest and the slowest progressions have been
guessed but we don’t know what happens in between these two cases.
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7.2 Extension of the geometric method

The geometric method can be extended to n > 3 following an analogous reasoning.
For example, it can be easily guessed that for n > 3 it is necessary to intersect n − 1 hyperplanes in
an hyperspace of n dimension and so on.

7.3 Equivalence of the definitions of canonical

In the fifth chapter we considered two different ways to define a canonical coin system.

Definition 7.1. The set of coins S is canonical1 iff for every x ∈ N0 and for every PS(x) ̸= GS(x)
it is | GS(x) | < | PS(x) |

Definition 7.2. The set of denomination S is defined canonical2 by induction:
• S = {c} is canonical2 for every c ∈ N0.

• S = S′ ∪ {c} is canonical2 iff

{
S′ is canonical2
∀ x > c . | GS(x) | < | GS′(x) |

We tried to prove that the two definitions are equivalent. We proved that:

Theorem 7.1. The following recurrences characterize the partitions PS and GS:

P{c}(x) = G{c}(x) |P{c}(x)| = |G{c}(x)| =
x

c
whenever x% c = 0

GS(x) = ( GS′(x% c) ,
⌊x
c

⌋
) |GS(x)| = |GS′(x% c)|+

⌊x
c

⌋
PS(x) = ( PS′(x− a · c) , a ) |PS(x)| = |PS′(x− a · c)|+ a where a ∈ {0 . . .

⌊x
c

⌋
}

Proof. 1. Of course, when c is the only currency available, there is at most one partition possible (i.e.
when c covers the amount x).
2. The greedy method uses all the

⌊
x
c

⌋
possible coins c in order to pay the amount x; the remainder

x% c is paid using the other currencies in S′, again with the greedy method.
3. In general, any partition PS can use the currency c any number of times a ranging from 0 to

⌊
x
c

⌋
;

the remainder x− a · c is paid using the other currencies, recursively.
The computation of the respective cardinality is straightforward.

Theorem 7.2. Let S = S′ ∪ {c}. If S is canonical1 then S′ is canonical1.

Proof. Suppose S canonical1. Then by definition for every amount x and every partition PS(x) dif-
ferent from the greedy one, we have |GS(x)| < |PS(x)|.
By the previous theorem, we can rewrite the last inequality as:

| GS′(x% c) |+
⌊x
c

⌋
< | PS′(x− a · c) |+ a for every 0 ≤ a ≤

⌊x
c

⌋
When a =

⌊
x
c

⌋
, it must be PS′(x) ̸= GS′(x) (otherwise PS(x) = GS(x)), and:

| GS′(x% c) |+
⌊x
c

⌋
< | PS′(x−

⌊x
c

⌋
· c) |+

⌊x
c

⌋
that is | GS′(x% c) | < | PS′(x% c) |.

Theorem 7.3. S is canonical1 iff S is canonical2.
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Proof. The proof proceeds by induction on |S|:
1. When S = {c} both S canonical1 and S canonical2 hold true.
2. As usual, call S = S′ ∪ {c}. By inductive hypothesis it is S′ canonical1 iff S′ canonical2. We
prove the two directions separately:
⇒) If S is canonical1 then S′ is canonical1 (by the previous theorem) and hence S′ canonical2, by
inductive hypothesis. Moreover, for every x > c take PS(x) := GS′(x) which is surely different form
GS(x) (as it uses c while PS(x) does not).
By definition of canonical1 it is |GS(x)| < |GS′(x)|, and hence S is canonical2.
⇐) Suppose S is not canonical1, and prove it is not canonical2.
In the case S′ is not canonical1 then by inductive hypothesis it is not canonical2, and therefore neither
S can be canonical2.

Otherwise we are in the case S′ is canonical1, while S is not; then there exists a value x and some
partition PS(x) ̸= GS(x) such that |GS(x)| ≥ |PS(x)|. This means that using coins smaller than c in
order to pay x results in a optimal partition. Suppose wlog1 c is used only once by GS (and hence not
used by PS). Then we can rephrase the inequality as:
| GS(x) | ≥ | PS′(x−0 ·c) |+0, and composing with | PS′(x) | > GS′(x) | (by hypothesis S canonical1),
we get the desired result.

To complete the proof it is necessary to prove that the two definitions are equivalent for all x ∈ N.

7.4 Four-coins systems

Given a system of coins S4 = {1, a, b, c} with 1 < a < b < c we already saw that the check on the
number c + b − 1 is not enough to prove that S4 is canonical. In fact the greedy method might give
the best representation for c+ b− 1 but not for a value less than c+ b− 1 as we saw in the previous
counterexample (5.1).
We suppose that the check should be done only on c+ b− 1, c+ b− a, c+ b− 2a, ... , c+ b− ka with
k <

b− 1

a
.

Example 7.1. Given S4 = {1, 5, 14, 38} and S3 = {1, 5, 14}, we have that c+ b− 1 = 51.

| GS4(51) |= 6 < 8 =| GS3(51) |

In this case k <
13

5
so we need to check just for k = 1 and k = 2.

c+ b− a = 47 =⇒ | GS4(47) |= 6 > 4 =| GS3(47) |

c+ b− 2a = 42 =⇒ | GS4(42) |= 5 > 3 =| GS3(42) |

So the coin system S4 = {1, 5, 14, 38} is not canonical.
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1Otherwise we could find another x′ = x− hc for some h for which the assumption holds.
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Editing Notes

[1] And given any element of A(n)k+1 other then the greatest one, expressed as a sum of a
term from A(n)1 and a term from A(n)k, the next element is obtained by adding d to either
one of these terms, so A(n)k+1 is still an arithmetic progression with common difference d.
[2] The results in this paragraph are presented as observations. The reader may try to
prove them.
[3] In fact for every set A(3)1 with 3 elements there exist natural integers p and q satis-
fying the requirements of the exit condition, and thus the cardinalities leaves the quickest
progression. Indeed, since (a3−a2)a1+(a2−a1)a3 = a3a1−a2a1+a2a3−a1a3 = (a3−a1)a2
and a2 − a1 = (a3 − a1) − (a3 − a2), if we let p = a3 − a1 and q = a3 − a2 we obtain two
natural integers satisfying (2); we can then divide p and q by their greatest common divisor
to get (p, q) = 1.
[4] So, the result below, |A(3)k,2| = 2k + 1, is the same as that of Theorem 2.1 in the case
n = 3.
[5] Of course, the formula cannot hold for all k. The computation above is done for k
starting at the exit step p, but the result still holds for k = p − 1 since the second sum is
null, and also for k = p− 2 since the second sum takes the value −p which cancels the last
term of the first sum.
[6] N0 denotes the set N \ {0} of positive integers.
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