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1 Statement of the problem

We know how to construct lengths with a ruler (with no gradations) and a compass and we also
know that some lengths cannot be constructed. But what numbers can we construct through
foldings? For example, if we had a string of paper of length 1, how could we fold it in order to
have a string of paper of length 1

3?

2 Results

In this paper we will present our approach for the construction of strings of paper of arbi-
trary positive rational length. We will also take a closer look at the structure the constructible
lengths of strings form, by observing possible extensions of our problem. Some of the possible
paper folding constructions can also be put in direct comparison to the straightedge and com-
pass constructions, showing that in fact paper folding constructions allow more freedom than
straightedge and compass.

3 Defining our problem

We are going to model the folds of the paper through geometric constructions and therefore, we
look for specific geometric elements which can be constructed.

Definition 3.1. A line l is constructible if a fold can be made along l.

Definition 3.2. A point A is constructible if there are two constructible lines that intersect at
A.

Definition 3.3. A number α is constructible if there are two constructible points at distance α.

3.1 Notations

In our approach, we have used the following sets to allow us to define the rules of construction.

• L = the set of constructible lines in the cartesian plane

• P = the set of constructible points in the cartesian plane

• C = the set of constructible numbers

3.2 Assumptions

In our research we use some reasonable assumptions to be able to extend our research topic.
Hence, we begin our construction with two points in the cartesian plane. We define the length
of the segment between these points to be our unit distance. We assume that our sheet of paper
is unbounded (such that we are able to work with the full cartesian plane). In our construction
we will also allow a segment of length 0 (which can be obtained using two overlapping points)
and allow negative elements in C .

3.3 Constructions axioms

Similar to the axioms of geometry, we use several rules (1) which define the kind of folds
allowed. In our research we will only be allowed to make one fold at a time and we have to
unfold the piece of paper before being able to fold it again.

Axiom 1. Given two points A and B, we can fold a line connecting them.

MATh.en.JEANS 2019-2020 Colegiul Naţional “Emil Racoviţă” Cluj-Napoca
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Axiom 2. Given two points A and B, we can fold A onto B (Perpendicular bisector).

Axiom 3. Given two lines l1 and l2, we can fold l1 onto l2 (Angle Bisector).

Figure 1: Axiom 1 Figure 2: Axiom 2 Figure 3: Axiom 3

Axiom 4. Given a point A and a line l, we can make a fold that is perpendicular to l and passes
through A.

Axiom 5. Given two points A and B and two lines l1 and l2, we can make a fold that places A
onto l1 and B onto l2 (Translating a segment).

Axiom 6. Given two points A and B and a line l, we can make a fold that passes through A
and places B on l.

Figure 4: Axiom 4 Figure 5: Axiom 5 Figure 6: Axiom 6

3.4 Geometry Theorems used

Theorem 3.1 (Right Triangle Altitude Theorem). If h denotes the altitude in a right triangle
and p and q the segments determined by the altitude on the hypotenuse then the following relation
is true:

h2 = pq.

3.5 Defining Abstract Algebra concepts used

Definition 3.4 (Monoid). A monoid is a set M together with an operation “∗” on M which
satisfies two axioms:

(i) ”∗” is associative, meaning that (x ∗ y) ∗ z = x ∗ (y ∗ z), for any three elements from M
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(ii) There is an element e in M such that x ∗ e = e ∗ x = x, for every x in M

Definition 3.5 (Group). A group is a set G together with an operation ”∗” on G which satisfies
three axioms:

(i) ”∗” is associative, meaning that (x ∗ y) ∗ z = x ∗ (y ∗ z), for any three elements from G

(ii) There is an element e in G such that x ∗ e = e ∗ x = x, for every x in G

(iii) Each element x of G has an inverse x′ ∈ G such that x ∗ x′ = x′ ∗ x = e

Definition 3.6. An abelian group G is a group such that for all x, y ∈ G we have that x∗y = y∗x

Definition 3.7 (Ring). A ring is a set R together with two operations (usually +, ·) which
satisfies the following conditions:

(i) Under addition R is an abelian group

(ii) Under multiplication R is a monoid

(iii) For all x, y, z ∈ R we have

x(y + z) = xy + yz and (y + z)x = yx+ zx.

Definition 3.8 (Field). A commutative ring such that the subset of nonzero elements form a
group under multiplication is called a field.

4 Building the cartesian plane

We could answer some specific questions about constructible lengths without using many difficult
concepts, but in order to find a way to describe the elements in L ,P and C it would be helpful
if we could use concepts from analytical geometry, such as denoting points by their cartesian
coordinates and lines by their equations.

We denote the two initial points by O and I and we will consider O to be the origin of the
plane and I to be of coordinates (1, 0). By using Axiom 1 we construct the line connecting O
and I (which is actually the x-axis).

We are going to define a sequence of folds such that we can obtain a point J that has the
following properties: JI ⊥ OI and JI = OI

Lemma 1. Given two points A,B ∈ P we can construct a point C such that AC ⊥ AB and
AC = AB.

Proof. • Using Axiom 1 we construct line l1 passing through A and B.

• Using Axiom 4 we construct line l2 perpendicular on l1 in B.

• Using Axiom 4 we construct line l3 perpendicular on l1 in A.

• Using Axiom 3 we construct line l4, the bisector of the right angle formed by l1 and l2.
Let {C} = l3 ∩ l4.

The length of AC is equal to the length of AB and AC ⊥ AB.
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Figure 7: Lemma 1

We are going to prove that the intersection of lines l3 and l4 is actually the point we needed.
Since the angles formed by l4 with l1 and l3 are both 45◦ we have that ∆BAC is an isosceles right-
angled triangle, so AC = AB and AC ⊥ AB. (Note that we have two possible constructions for
point C. We can choose either one.)

Using Lemma 1 we can build both the y-axis and point J on this axis, such that OJ = 1.

5 Constructing the integers

To define a way to prove that Z× Z ⊂P, we will need to use another lemma.

Lemma 2. Given two points A,B ∈P we can construct a point A′, such that A′ is the reflection
of A through B.

Proof. By applying Lemma 1 twice we can successively obtain point C such that CB = AB and
CB ⊥ AB and then point A′( 6= A) such that A′B = CB and A′B ⊥ BC.

Figure 8: Lemma 2

Because both AB ⊥ BC and A′B ⊥ BC, we have that A,B,A′ are collinear and AB =
BC = A′B. Hence, A′ is the reflection of A through B.

Returning to our problem, we can now use the lemma above to construct all points of integer
coordinates. Firstly, we construct the points of integer coordinates on the x-axis and y-axis, by
applying Lemma 2 multiple times to create consecutive segments of length 1. Afterwards, to
construct the point (m,n),m, n ∈ Z we can use Axiom 4 twice, to create perpendiculars on the
axis through points (m, 0) ∈ P and (0, n) ∈ P. The intersection of these perpendiculars will
be point (m,n).
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6 Constructing the rationals

After finding a way to easily construct points with integer coordinates, we want to see if we
can move on to points of rational coordinates. It turns out that all rational numbers are also
constructible and we will now provide two methods for constructing them.

6.1 First Method

Rationals of the form m/2n

The first observation is that we can easily obtain rational numbers with denominator a power
of 2. To obtain the fraction 1

2 we can use Axiom 1 and Axiom 2 to build the intersection of
the perpendicular bisector of segment (OI) and x-axis. Let M1 be this intersection. Then,
OM1 = 1

2 . To obtain k/2, k ∈ Z we can use a proccess similar to the one we described for
obtaining the integers.

Figure 9: Folding 1
2 Figure 10: Folding 1

2n

Arbitrary rational number

Firstly, we will show that it is possible to construct the fraction 1
3 and then by induction we will

show that it is possible to extend our algorithm to any fraction of the form 1
n , n ∈ N. Using the

following two lemmas we will be able to prove the induction step.

Lemma 3. The fraction 1
3 is constructible.

Proof. We start our proof by constructing point J as described in the previous sections. Now,
by applying Axiom 4 twice, to construct perpendiculars from I on x-axis and from J on y-axis.
Let K(1, 1) be the intersection of these perpendicular. Using the following set of constructions
we can get to a segement of length 1

3 :

• Using Axiom 2 we construct l1, the perpendicular bisector of (OI).

Let {M} = l1 ∩OI be the midpoint of (OI).

• Using Axiom 2 we construct l2, the perpendicular bisector of (KM).

Let {N} = l2 ∩KM .

• Using Axiom 1 we construct l3, the line connecting M and N .

• Using Axiom 4 we construct l4, the perpendicular in M on l3.

Let {P} = l4 ∩OJ .

• Using Axiom 2 we construct l5, the perpendicular bisector of (PO).

Let {Q} = l5 ∩ PO be the midpoint of (PO).
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Figure 11: Folding 1
3

Because N ∈ l2, we have that KN = NM = x and KN +NI = 1. We also have that NI ⊥MI
and MI = OM = 1

2 , so by Pythagoras’s Theorem we get that:

x2 = (1− x)2 +
1

4
=⇒ x =

5

8
=⇒ NI =

3

8
.

Because µ(]NMP ) = 90◦, we have that µ(]NMI)+µ(]PMO) = 90◦. SinceNI ⊥MI, we also
have that µ(]NMI) + µ(]MNI) = 90◦, so ]MNI ≡ ]PMO. Similarly, ]NMI ≡ ]MPO.
Hence, the triangles ∆NMI and ∆MPO are similar (∆NMI ∼ ∆MPO).
We have obtained the following relation:

PO

MI
=
OM

NI
=⇒ PO

1
2

=
1
2
3
8

=⇒ PO =
2

3
.

Because PQ = QO = PO
2 = 1

3 , we get that 1
3 ∈ C .

Lemma 4. If fraction 1/k ∈ C , then 1/(k + 1) ∈ C .

Proof. We are going to start by constructing point K(1, 1) as described in Lemma 3. Because
1/k ∈ C we can construct point M ∈ (OI) such that MI = 1/k. Similarly to the previous
lemma we define the following set of constructions:

• Using Axiom 2 we construct l2, the perpendicular bisector of (KM).

Let {N} = l2 ∩KM .

• Using Axiom 1 we construct l3, the line connecting M and N .

• Using Axiom 4 we construct l4, the perpendicular in M on l3.

Let {P} = l4 ∩OJ .

• Using Axiom 2 we construct l5, the perpendicular bisector of (PO).

Let {Q} = l5 ∩ PO be the midpoint of (PO).

By applying Pythagoras’ Theorem in ∆NMI we can easily get that (2)

NI =
(k − 1)(k + 1)

2k2
.

Because ∆NMI ∼ ∆MPO we get that:

PO

MI
=
OM

NI
=⇒ PO

1
k

=
k−1
k

(k−1)(k+1)
2k2

=⇒ PO =
2

k + 1
.

Because PQ = OQ = PO/2 = 1/(k + 1), we get that 1/(k + 1) ∈ C .
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We have now proved that every fraction 1/n, n ∈ N is constructible, so we can apply
Lemma 2 multiple times to construct every fraction m/n, m ∈ Z, n ∈ N (the same process used
to construct the integers).

6.2 Second Method

Lemma 5. Given α, β ∈ C , we also have that αβ ∈ C .

Proof. We begin our proof by constructing x-axis and y-axis and point O(0, 0) as described
before.

• Since 1, α, β ∈ C , we can construct points J(0, 1), A(α, 0), B(0, β).

• Using Axiom 1 we construct the line connecting J and A.

• Using Axiom 4 we construct line l1 perpendicular to AJ .

• Using Axiom 4 we construct line l2 perpendicular to l1. Let {C} = OA ∩ l2.

We have that JA ‖ BC. Since ∆OAJ ∼ ∆OCB, we get that

OC

OA
=
OB

OJ
⇒ OC

α
=
β

1
.

Hence OC = αβ and αβ ∈ C .

Lemma 6. Given α ∈ C , α 6= 0, we also have that 1/α ∈ C

Proof. • Since 1, α ∈ C we begin by constructing the x-axis and y-axis and pointsO(0, 0), I(1, 0), A(0, α).

• Using Axiom 1 we construct the line connecting A and I.

• Using Axiom 4 we construct line l perpendicular to AI. Let {B} = l ∩AO.

Using the Right Triangle Altitude Theorem we get that IO2 = BO · AO and so BO = 1/α.
Hence 1/α ∈ C .

We have proven in the previous sections that N ⊂ C , so we can apply the two lemmas above
to construct any rational number m/n, m,n ∈ N. Using Lemma 6 we have that 1/n ∈ C and
then by using Lemma 5 for 1/n, m we get that m/n ∈ C .

Figure 12: Folding αβ Figure 13: Folding 1
α
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7 Structure of C

7.1 Field Structure

Lemma 7. Given α, β constructible numbers, we can also construct α+ β and α− β.

Proof. Construct points A(α, 0), B(−β, 0). The length AB = α+ β.
Construct points A(α, 0), B(β, 0). The length AB = α − β. (Assuming we allow negative

lengths if α < β).
In both cases we could use Axiom 5 to translate segment AB to the origin of the cartesian

plane.
Hence α+ β, α− β ∈ C . (Choosing α = 0 we get that −β ∈ C for all β ∈ C .)

We have now seen that C is closed under addition and multiplication and that (C ,+) is a
group (with 0 ∈ C as the additive identity) and (C \{0}, ·) is also a group (with 1 ∈ C as the
multiplicative identity). We can now conclude that C has a field structure with Q ⊂ C .

7.2 Taking square roots

Lemma 8. Given α ∈ C , we can also construct
√
α (3) .

Proof. • We begin by constructing x− axis, y − axis and points O(0, 0), A(α, 0).

• Using Lemma 5 and Lemma 6 we get that (α− k)/2 ∈ C , for all k ∈ C . Take 0 < k < α
and construct point B((α− k)/2, 0).

• Using Axiom 6 construct line l1 placing A on the y-axis, passing through B.

• Using Axiom 4 construct line l2 perpendicular to l1, passing through A.

Let {A′} = l2 ∩ y − axis and let x = OA′.

Figure 14: Folding
√
α

The length OA′ =
√
kα: using Pythagoras’ Theorem for right-angled triangle ∆BOA′ we

get that (
α+ k

2

)2

=

(
α− k

2

)2

+OA′ 2 ⇒ OA′ =
√
kα.

Therefore, taking k = 1 (4) , we get that
√
α ∈ C .

In the sections above we have proven that C is actually closed under simple operations like
addition and multiplication and that it even has a field structure. Here, we have also proven
that the set of constructible numbers is closed under taking square roots. This seems to be a
very powerful statement, since it shows that the set of constructible numbers using straightedge
and compass is actually a subset of the set of constructible numbers using paper folding (5) .
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8 Trisecting an acute angle

It is well known that the classical straightedge and compass problem of trisecting an angle has
been proven to be unsolvable. However, we can see that using paper folding we can find a way
to trisect an acute angle, showing that in fact paper folding constructions may even be more
powerful that straightedge and compass constructions.

Lemma 9. Given an acute angle θ with vertex in O(0, 0), we can construct two lines trisecting
angle θ.

Proof. We assume that θ is formed between the x-axis and an arbitrary line l that intersects
the origin.

• Take k ∈ C . Since 2k is also in C , we can construct points Q(0, k) and P (0, 2k).

• Construct the y-axis.

• Using Axiom 4 construct the perpendicular l1 from Q on y-axis.

• Using Axiom 5 construct a fold that places P on l and O on l1. Mark this fold by l2.

• Using Axiom 4 construct line l3 such that P ∈ l3 and l3 ⊥ l2. Let {P ′} = l ∩ l3.

• Using Axiom 4 construct line l4 such that O ∈ l4 and l4 ⊥ l1. Let {O′} = l1 ∩ l4.

• Using Axiom 1 construct line l5 connecting P ′ and O′.

• Using Axiom 4 construct line l6, the perpendicular from O on P ′O′.

Let {Q′} = l6 ∩ P ′O′.

Lines OQ′ and OO′ trisect angle θ.

Figure 15: Trisecting an angle

Since l2 is the perpendicular bisector of PP ′ and OO′ we have that PP ′O′O is an isosceles
trapezoid. Therefore, PO′ = P ′O (∆POO′ ≡ ∆P ′O′O).

Since PQ = QO and QO′ ⊥ PO, ∆POO′ is isosceles, so PO′ = OO′. Hence, OO′ = OP ′.
Now we have that ∆OP ′Q′ ≡ ∆OO′Q (since P ′O = O′O, OQ′ is a common edge and

µ(]P ′Q′O) = µ(]O′Q′O) = 90◦). Therefore

]P ′OQ′ ≡ ]O′OQ′ and P ′Q′ = Q′O′ =
P ′O′

2
= k.
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Let M be the projection of O′ on the x-axis, then O′M = k. Moreover, we also have that
∆OO′M ≡ ∆OO′Q′, so ]O′OM ≡ ]O′OQ′.

Hence µ(]P ′OQ′) = µ(]O′OM) = µ(]O′OQ′) = θ/3 and we have construct two lines that
trisect an arbitrary angle.

9 Conclusion and further research

We have closely observed the structure of the set of constructible numbers discovering that it is
closed under common operations like addition and multiplication, that it has a field structure
and that it is even closed under taking square roots. Folding paper has proven to be more
powerful than straightedge and compass, allowing us to solve problems unsolvable using only
straightedge and compass.

However, our research on this interesting set of numbers can be extended even further. We
could ask ourselves what is the complete characterization of C , trying to discover what other
kinds of operations can be applied on C (such as taking cube, fourth and fifth power roots).

We could also think about the possible extensions of our problem. We could allow two or
even more folds at the same time, which would enable constructions impossible using only the
axioms we have described in section 3.
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Notes d’édition

(1) These basic rules for paper folding are known as Huzita–Justin axioms or Huzita–Hatori
axioms.

(2) The proof is the same as that of Lemma 3, except that here MI = 1/k: with the same

notation, Pythagoras’ Theorem yields x2 = (1 − x)2 + 1/k2, so 2x = 1 + 1/k2 and NI =
1− 1

2(1 + 1/k2) = (k2 − 1)/2k2.
Below, similarity of the triangles ∆NMI and ∆MPO is proven exactly as in Lemma 3.

(3) Of course, we have to assume α ≥ 0 here, and even α > 0 for the proof below.

(4) This presupposes α > 1, but otherwise we can choose k = 1/n with some n > 1/α, construct
√
kα =

√
α/n and apply Lemma 5 with

√
α/n and

√
n to get

√
α ∈ C (or construct

√
1/α and

apply Lemma 6).

(5) Indeed, it is known that numbers which are constructible using straightedge and compass
are exactly those which are obtained from rational numbers by taking sequences of square roots
and field operations (Wantzel’s Theorem), so they all belong to C . Note that it is not yet proven
that C is strictly larger, but this will be a consequence of the possibility of trisecting the angles
as explained in the next section.
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