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Abstract

Consider a half-plane delimited by a line h, where lines are semicircles centred on h. We
show what happens to polygons.
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1 Introduction: the problem
The text of the problem says:

Let us consider as a “plane space” a half-plane delimited by a line h, as “lines” the semicircles
of center on h and as “points” those of the half plane, we obtain a geometry that verifies the
axioms of classical Euclidean geometry with the exception of the postulate V (axiom of parallel
lines).

What happens to polygons? For example, the sum of the angles is no longer constant!

2 Background information
First of all, basing on the text of the problem, we define the primitive notions of our geometry:

• plane: half-plane delimited by an Euclidean line called h, which does not belong to the
plane;

• point: it corresponds to the Euclidean point;

• line: Euclidean semicircle centered on h;

• half-line: each of the two parts in which a line is divided by a point O called origin,
non-belonging to h;

• degenerate line: Euclidean half-line perpendicular to h with its origin on h. It is a line
with infinite radius;

• segment: part of a line defined by two distinct points A and B, not belonging to h;

• polygon: figure consisting of consecutive segments;

• angle: each part of the plane identified by two half-lines of the same origin, including the
two half-lines.

Secondly, Let us study the five axioms of the Euclidean geometry to be able to create a
geometry that verifies them all, except for the fifth. In particular, not having any metric and so
any way to define length, we decide to investigate the Hilbert axioms instead of the Euclidean
axioms (see [1]). Following the axioms (2) :

1. Given two distinct points A and B there is one and only one line that contains them both.

2. Each line r is an ordered set of points, such that taken on r two distinct points A and B
there is always a point C of r between A and B.

3. There are infinite lines for each point. On a line passing through A and B there are two
possible orders on r, the one for which A precedes B and the one for which B precedes A.

4. Given two oriented lines a and b and two points A P a and B P b then there are two rigid
motions that lead a to coincide on b, with A on B; one makes the two orientations coincide
and the other arranges them in the opposite direction.
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5. Given a line a and a point P R a, there exists one and only one line b containing P parallel
to a (thus, a and b are disjoint).

The first axiom is verified by the Euclidean definition of half-circle, except in the case where
the two points are positioned vertically. For this reason it is necessary to introduce the degenerate
lines. The second axiom is verified by the Euclidean definitions of half-line and line. To verify
the third and the fourth axioms it is necessary to create an appropriate rigid motion. It will be
analyzed in the next section. To deny the fifth axiom let us define as parallel lines all the lines
which do not intersect each other. In this way there are an infinite number of possible lines b
containing P parallel to a.

Figure 1

At this point, in order to be able to answer the question of the problem, we need a way to
prove if two segments are congruent, or if they are not, which one is bigger and which one is
smaller. Thus, we have to find a rigid motion which makes us able to do that and which respects
all the axioms except for the fifth.

3 The rigid motion
In this section we analyse the rigid motion. Given a segment on a line, the rigid motion will
enable us to create a congruent segment on another line. As a consequence, it makes us able to
overlap two different segments and so to proof if two different segments are congruent or not.
In this way we are able to create polygons.

After several attempts, we decided to ask for help from the professor Franz Rothe from
University of North Carolina at Charlotte. Together we developed a rigid motion which respects
all the preconditions above and guarantees that the congruence of segments is an equivalence
relation. So we have the reflexive, symmetric and transitive property (see [2]).
The reflexive and symmetric properties are obvious. Instead, acquiring what the professor Franz
Rothe suggested, we accept the transitive property, even if we are not able to prove it, in order
to go on with the problem.

To better explain the rigid motion, we divide it into five paragraphs (3) .
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3.1 From a line to a different line
In this paragraph we analyze the rigid motion which, given a segment on a line and a point on a
different line, makes us able to create a congruent segment on the second line starting from the
given point on it. The new segment can be created on both orientations relative to the point on
the second line.

Referring to Figure 2, let CD be a segment on the line c and E the point on the line d.
Let us start from c and create two Euclidean half-lines (we call them g and s) starting from an
endpoint of the line c and passing through the two endpoints C and D of the segment. Let us
create the Euclidean half-line (we call it l) starting from an endpoint of d (which has to be on
the opposite side of the endpoint of the first line) and passing through the point E. In this way
we find two intersections between the Euclidean half-lines. Let us call them G and I. Let us
create a degenerate line passing through G. As a consequence we find another intersection, F ,
with s. Let us create an Euclidean half-line starting from the endpoint of d and passing through
F . We find a point L on d. The segment LE is congruent to the initial segment CD. Let us do
the same for the second intersection, I. We find another segment on d. It is congruent to CD
and by the transitive property it is also congruent to LE.

Figure 2

3.2 From a line to the same line
In this paragraph we analyze the rigid motion which, given a segment on a line and a point on
the same line, makes us able to create a congruent segment on the line starting from the given
point on it. The new segment can be created on both orientations relative to the point on the
line.

Referring to Figure 3, let CD be a segment on a line and E the point on the same line. Let
us start creating the two Euclidean half-lines g and s starting from the endpoint B and passing
trough the two endpoints of the segment CD. Let us create the Euclidean half-line l starting
from the endpoint A of the line and passing through E. In this way we find two intersections
between the Euclidean half-lines. Let us call them F and G. Let us create a degenerate line
passing through F . As a consequence we find the intersection H with s. Let us create an
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Euclidean half-line starting from A and passing trough H. We find a point L on the line. The
segment LE is congruent to CD.

Let us do the same for the second intersection, G. We find the segment EM ; it is congruent
to CD and, by the transitive property, it is also congruent to LE.

Figure 3

3.3 From a line to a degenerate line
In this paragraph we analyze the rigid motion which, given a segment on a line and a point on a
degenerate line, makes us able to create a congruent segment on the degenerate line starting from
the given point on the degenerate line. The new segment can be created on both orientations
relative to the point on the degenerate line.

Referring to to Figure 4, let CD be a segment on a line a and E a point on the degenerate
line l. Let us create the two Euclidean half-lines g and s starting from the endpoint A of the line
and passing through the two endpoints of the segment. Let us create a Euclidean line i parallel
to h passing through E. In this way we find two intersections between the Euclidean half-lines
g and s and the Euclidean line i. Let us call them F and G. Let us create the degenerate
line passing through F . As a consequence we find the intersection H with s. Let us create
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the Euclidean line p parallel to h passing through H. We find the point M on the intersection
between l and p. The segment ME is congruent to the initial segment CD. Let us do the same
for the second intersection, G. We find the segment EL. It is congruent to CD and, by the
transitive property, it is also congruent to ME.

Figure 4

3.4 From a degenerate line to a different degenerate line
In this paragraph we analyze the rigid motion which, given a segment on a degenerate line and a
point on a different degenerate line, makes us able to create a congruent segment on the second
degenerate line starting from the given point on it. The new segment can be created on both
orientations relative to the point on the degenerate line.

Referring to Figure 5, let DC be a segment on a degenerate line t and E a point on another
degenerate line c. Let us create the Euclidean line g passing through E and D. It intersect h
in the point Q. Let us create the Euclidean half-line m starting from Q and passing through C.
We find the point L on the intersection between c and l. The segment LE is congruent to DC.
Let us to the same creating the Euclidean line s passing through E and C. We find the segment
ME. It is congruent to DC and, by the transitive property, it is also congruent to LE.
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Figure 5

3.5 From a degenerate line to the same degenerate line
In this paragraph we analyze the rigid motion which, given a segment on a degenerate line
and a point on the same degenerate line, makes us able to create, a congruent segment on the
degenerate line starting from the given point on it. The new segment can be created on both
orientations relative to the point on the degenerate line.

Referring to Figure 6, let CD be a segment and E a point on a degenerate line c. Let us
create a degenerate line t on the half-plane. Then let us create the two Euclidean lines q and p
parallel to h passing through the two endpoints of the segment CD. We find a segment HI on
t which is congruent to CD. Now we have t with the segment HI and the point E on c. Let us
use the rigid motion [3.4]. We find the two segments ME and EL which are both congruent to
the initial segment CD.
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Figure 6

4 Polygons
4.1 Definition
A polygon is a figure delimited by at least three consecutive segments, called sides. The angle of
a polygon is the plane space between two consecutive sides. In order to measure an angle let us
create the Euclidean tangents to the lines passing through the origin of the angle. We measure
the angle between the two tangents in the Euclidean way.

In the next paragraphs we will study the following polygons:

• Triangle; that is a polygon delimited by three sides;

• Quadrilateral; that is a polygon delimited by four sides;

• Regular polygon with more than four sides; that is a polygon delimited by at least five
congruent segments called sides.

4.2 Sum of the interior angles of triangles
To better understand the next study of triangles we start with the analysis of the sum of the
interior angles.

Referring to Figure 7, let us start from a triangle ABC (the blue one). First of all, let us
consider the lines which identify the sides of the triangle as Euclidean semicircles, then let us
create their central angles subtended by the sides of the triangle. We call them α, β and γ, with
β between the other two angles. Secondly let us create the Euclidean triangle (the green one)
with the same vertices of the triangle.

Referring to Figure 8, we start analysing the angle pA. It is identified by the two tangents
(the black Euclidean lines) at the semicircles passing through A, and it is divided in two parts
by the side AC of the Euclidean triangle.
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Figure 7

Figure 8

The angle identified by the upper black Euclidean line and the green side AC, is the angle
at the circumference of the central angle β, so it measures β

2 . The under part (angle identified
by the green side AC and the lower Euclidean black tangent) is a part of the Euclidean angle
B pAC. In particular it measures B pAC ´ α

2 , with B pAC the angle of the green triangle and α
2 the

angles identified by the green side AB and the lower black tangent, which is the angle at the
circumference of the central angle α. Thus, the angle pA measures

pA “ B pAC ´ α
2 `

β
2 .

The second angle we analyse is pC. In a similar way the angle pC measures

pC “ B pCA ´
γ
2 `

β
2 .

We finally analyse the angle pB. It is a part of the green Euclidean angle A pBC. In particular
the part on the left of pB (angle identified by the green side AB and the left Euclidean black
tangent) is the angle at the circumference of the angle α, the part on the right of pB (angle
identified by the green side BC and the right Euclidean black tangent) is the angle at the
circumference of γ. Thus, the angle pB measures

pB “ A pBC ´ α
2 ´

γ
2 .
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Figure 9

Now, summing the three angles pA, pB and pC, we find a general result for the sum of the interior
angle of triangles, knowing the measures of the central angles. The value is π ´α ` β ´ γ. This
relation works only for this particular position of the vertex B with respect to the side AC.

Figure 10

Instead, if B is above the segment AC, then the value is π ` α ´ β ` γ.

Figure 11
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Hence, joining the two relations, we find the following:
Theorem. Given a general triangle ABC identified by the intersections of three Euclidean

semicircles, and called α, β and γ the three central angles of the Euclidean semicircles subtended
by the sides of the triangles, with β between the other two angles, the sum of the interior angles
of ABC is

π ˘ p´α ` β ´ γq .

At this point we prove that:
Corollary. The sum of the interior angles of triangle is less than π.
We prove the statement starting with the first case, when the sum of the interior angles is

equal to π ´ α ` β ´ γ. Proving π ´ α ` β ´ γ ă π is equivalent to show that α ` γ ą β.
Referring to Figure 12, let us consider a triangle ABC and allow the existence of the

half-plane below h. So let us consider the lines which identify the sides of the triangle as
Euclidean circles and let us create the central angles of the three circles c, e and d. We call α
the central angle of the circle c, β the central angle of e and γ the central angle of d. Then
we call K the intersection between c and e, and Q the intersection between d and e (in the
half-plane below h) .

Figure 12

Let us consider the angle at the circumference starting from K and passing through AB.
It is an angle at the circumference of both c (angle A pKB) and e (angle A pKM , with M the
intersection with e found by the angle, which is subtended by AM). Let us consider the angle
at the circumference starting from Q and passing through BC. As before, it is an angle at the
circumference of both d (angle C pQB) and e (angle C pQN) and it finds an intersection with e,
that we call N .

Then let us draw the central angle on e subtended by CN (angle CpLN) and the one subtended
by AM (angle ApLM).

We know that A pKB “ α
2 and that A pKB “ A pKM , so A pKM “ α

2 . Since A pKM “ 1
2A

pLM ,
ApLM “ α. Similarly C pQB “

γ
2 and C pQB “ C pQN , so C pQN “

γ
2 . Since C pQN “ 1

2C
pLN , so

CpLN “ γ. As you can see from the figure above ApLM ` CpLN ą β.
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Figure 13

Figure 14

This is always true because, in the half-plane above h, c X d ă c X e and c X d ă d X e and,
in the half-plane below h, c X d ą c X e and c X d ą d X e. For this reason, the Euclidean line
passing trough KB intersects e on M , which is on the right side of B, and the Euclidean line
passing trough QB intersects e on N , which is on the left side of B.

Thus, since ApLM ` CpLN ą β, α ` γ ą β and as a consequence the sum of the interior
angles of this type of triangles is less than π.

Let us now consider the second case, in which we have to prove that α ` γ ă β.
The second case lead us to the same conclusion of the first one. We consider the same plane

of before, but with a different triangle ABC which have the vertex in the middle above its
opposite side.

Let us do the same procedure we have just done. This time ApLM ` CpLN ă ApLC. This
is always true because, in the half-plane above h, c X d ą c X e and c X d ą d X e and, in the
half-plane below h, c X d ă c X e and c X d ă d X e. For this reason, the Euclidean line passing
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Figure 15

through KB intersects e on M , which is on the left side of B, and the Euclidean line passing
through QB intersects e on N , which is on the right side of B.

Thus, since ApLM ` CpLN ă β, α ` γ ă β and as a consequence the sum of interior angles
of this type of triangles is ă π.

In conclusion, we proof that the sum of interior angles of all triangles is always less than π.

4.3 Sum of interior angles of all polygons
The relation we have just proved can be generalized to all polygons. The generalization works
exactly as in the Euclidean case:

Corollary. The sum of interior angles of all the types of polygons is less than π ¨ pn ´ 2q,
with n the number of the sides of the polygon.

5 Triangles
5.1 Definition
A triangle is polygon delimited by three sides.

5.2 Criteria of congruence
Two triangles are congruent if it is possible to overlap them with a rigid movement so that they
coincide point by point (4) . Some necessary and sufficient conditions for a pair of triangles to
be congruent are:

• SAS Criteria: Two sides and the angle between them in a triangle are congruent to those
in the other triangle, respectively.

• ASA Criteria: Two angles and the side included (the side that they have in common) in a
triangle are congruent, respectively, to those in the other triangle.
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• SSS Criteria: Each side in a triangle is congruent, respectively, to the corresponding one
in the other triangle.

We assume the SAS criteria as a postulate and, as a consequence, the proves of the other
two criteria are the same as the Euclidean ones.

5.3 Notable points
It is possible to prove that even in this non-Euclidean geometry, the four notable points of the
triangles exist.

1. Incenter: it is the intersection point of all the bisectors of a triangle.

Figure 16: Incenter

2. Circumcenter: it is the intersection point of the three perpendicular bisectors of a triangle.

Figure 17: Circumcenter
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3. Centroid: it is the intersection point of the medians of a triangle.

Figure 18: Centroid

4. Orthocenter: it is the intersection point of the three altitudes of a triangle.

Figure 19: Orthocenter

The proof of existence of both incenter and circumcenter is the same as the Euclidean one
(5) . On the other hand, we failed to prove the other ones because in Euclidean geometry they
exploit the Thalete Theorem, which rests on the fifth postulate, denied from our problem.
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5.4 Classification with respect to sides
The triangles can be classified according to their sides

• Scalene triangle: it has three non-congruent sides. It is noticeable that it has three different
angles, as in the Euclidean geometry.

Figure 20: Scalene Triangle

• Isosceles triangle: it has two congruent sides. It is noticeable that it has congruent base
angles as in the Euclidean geometry. The proof of the Isosceles angle theorem is the same
as the Euclidean one.

Figure 21: Isosceles tTriangle

• Equilateral triangle: it has three congruent sides. It is noticeable that it has three congruent
angles as in the Euclidean geometry. The angles measure is not 60˝, but it depends on the
side measure.

Figure 22: Equilateral Triangle
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5.5 Classification as regard its angles
The triangles can be classified according to their angles, here measured in degrees.

• Acute Triangle: it is a triangle in which all the interior angles measure less than 90˝.

Figure 23: Acute triangle

• Obtuse triangle: it is a triangle in which one interior angle measures more than 90˝.

Figure 24: Obtuse Triangle

• Right-angled triangle: it is a triangle with one of its interior angles measuring 90˝. As
regards the Pythagorean theorem and the Euclidean theorem, we have not been able to
prove them, not having a definition of length, therefore of area.

Figure 25: Right-angled Triangle

MATh.en.JEANS 2018-2019 Liceo Scientifico Romano Bruni, Padova Page 17



6 Quadrilaterals
6.1 Definition
A quadrilateral is a polygon delimited by four sides. Referring to [4.3], we can notice that the
sum of interior angles of all quadrilaterals is always less than 360˝.

6.2 Parallelogram

It is defined as a quadrilateral with opposite angles and sides (6) . Indeed, it is not possible to
define it in the exact same way of the Euclidean one due to the denial of the fifth axiom. We
can notice that all the properties of the Euclidean parallelogram are verified.

Figure 26: Parallelogram

6.3 Rhombus
It has four congruent sides and the opposite angles are congruent. All the properties of the
Euclidean rhombus are verified.

Figure 27: Rhombus

6.4 Rectangle
It is a parallelogram with all congruent angles. Their measure is not 90˝, but it depends on the
side measure. All the properties of the Euclidean rectangle are verified.
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Figure 28: Rectangle

6.5 Square
It is a rectangle with four congruent sides. It has four congruent angles as in the Euclidean
geometry. Their measure is not 90˝, but it depends on the side measures. All the properties of
the Euclidean square are verified.

Figure 29: Square

7 Regular polygons
7.1 Definition
A regular polygon is a polygon delimited by congruent sides (7) . Here we analyse regular
polygons with at least five sides.

7.2 Pentagon
It has five congruent sides and angles. All the properties of the Euclidean pentagon are verified.
The sum of the interior angles is less than 540˝.
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Figure 30: Pentagon

7.3 Hexagon
It has six congruent sides and angles. All the properties of the Euclidean hexagon are verified.
The sum of the interior angles is less than 720˝.

Figure 31: Hexagon

7.4 Octagon
It has eight congruent sides and angles. All the properties of the Euclidean octagon are verified.
The sum of the angles is less than 1080˝.
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Figure 32: Octagon

8 Circle
A circle centered in C is the locus of the points P such that the segments PC are congruent
when P varies. Visually, it does not appear perfectly circular, but more vertically flattened (8) .

Figure 33: Circle
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9 Constructions
In this section we explain how to construct some polygons.

9.1 Triangles
9.1.1 Scalene Triangle

Let us create three lines intersecting one another. The triangle is the polygon formed by the
three segments generated by the intersections. You can check whether the sides are congruent
with the rigid motion.

Figure 34: Scalene Triangle

9.1.2 Isosceles Triangle

Let us create a segment on a line. Using the rigid motion let us create a congruent segment with
a shared endpoint.

Figure 35

Using the Euclidean perpendicular bisector of the two non shared endpoints we find the
centre of the third side’s line.
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Figure 36: Isosceles Triangle

9.1.3 Equilateral Triangle

Let us create a line and the point O being on this line. Let us create the Euclidean tangent line
to the line passing through O and let us divide the turn angle in three angles, each measuring
120˝. The Euclidean half-lines perpendicular to the Euclidean lines that define the angles we
just described can be used to find the other lines where the vertices of the equilateral triangle
are going to be.

Figure 37

You now have to choose where to put the vertex A of your triangle on the first non-Euclidean
line and then, using the rigid motion, finding the other vertices B and C.

After that, as you do while creating an isosceles triangle you use the perpendicular bisectors
of the Euclidean segments AB, BC and CA to find the centre of the non-Euclidean lines that
contain the sides of triangle found joining the vertices.
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Figure 38

Figure 39: Equilateral Triangle
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9.1.4 Acute Triangle

Construct a scalene triangle while making sure no angle is greater than or equal to 90˝ using
the Euclidean tangents of the non-Euclidean lines passing through the vertex.

Figure 40

You can also find an isosceles acute triangle by making sure the angle between the two
congruent sides is less than or equal to 90˝.

Figure 41

An equilateral triangle is always acute in this non-Euclidean geometry
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9.1.5 Obtuse Triangle

Construct a scalene triangle while, using the Euclidean tangents of the non-Euclidean lines
passing through the vertex, making sure that there is an angle greater than or equal to 90˝.

Figure 42

You can also find an isosceles obtuse triangle by making sure that the angle between the two
congruent sides is greater than or equal to 90˝.

Figure 43
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9.2 Quadrilaterals
9.2.1 Parallelogram

Let there be a triangle ABC; create an angle adjacent to C pAB congruent to B pCA and an
angle adjacent to B pCA congruent to C pAB; using the Euclidean perpendicular lines to the
half-lines that delimit the angles that we just created, we can find the centre of the non-Euclidean
lines where the other two sides of the Parallelogram are located; the intersection of these two
non-Euclidean lines is the fourth vertex and the quadrilateral is made of the four congruent sides
of the two triangles.

Figure 44: Parallelogram

9.2.2 Rhombus

Let there be an isosceles triangle ABC; create a congruent angle adjacent to each angle at the
base of the triangle; using the Euclidean perpendicular lines to the new half-lines that delimit
the angles that were just created, we can find the centre of the non-Euclidean lines where the
other two sides of the Rhombus are located; the intersection of these two non-Euclidean lines is
the fourth vertex and the quadrilateral is made of the four congruent sides of the two isosceles
triangles.
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Figure 45: Rhombus

9.2.3 Square

The construction just like all the other regular polygons is similar to the equilateral triangle
one, but dividing the turn angle in four 90˝ angles instead.

Figure 46: Square
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9.3 Regular Polygons
9.3.1 Pentagon

Regular polygon construction with five 72˝ angles.

Figure 47: Regular pentagon

9.3.2 Hexagon

Regular polygon construction with six 60˝ angles.

Figure 48: Regular hexagon
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9.3.3 Octagon

Regular polygon construction with eight 45˝ angles.

Figure 49: Regular octagon

9.4 Circle
Given a point C as the centre of the circle, choose a radius and a point D of the circle on the
degenerate line throuh C. Then, using the rigid motion, find the points of the circle on any
non-Euclidean line through C. Moving the centre of the non-Euclidean line will compose the
circle.

Figure 50
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Editing Notes

(1) Warning from editors. The first part of this work, up to section 4, presents
a thorough study, consistent with what is desired for a MeJ article. However the
second part, from section 5 onwards, consists mostly in definitions, constructions or
results given without proofs and, despite their interest as well as the care given to the
numerous figures, this latter part is very incomplete.
(2) The list of axioms given here is not complete. In particular, the axioms concerning
angles are missing (axioms IV-4 to IV-6 in Hilbert’s book [1]). We also note that Hilbert
introduces the notion of congruence of segments and angles, but does not refer to rigid
motions his axioms.
(3) Note that in this section, the authors present only the action of rigid motions on
lines and segments, but no information is given on their action on the angles.
Besides, for ease of reading, the reader may begin with paragraphs 3.3 (from a line
to a degenerate right) and 3.4 (from a degenerate line to a different degenerate line).
In other cases, an auxiliary degenerate line is introduced, and we can proceed by
transitivity.
(4) As said in Note 1, from here the results are given without real proofs.
Moreover, we do not have here an effective definition of the congruence of triangles,
since we do not have a characterization of the rigid movements except for their action
on a line. Also, orientation may be changed and ‘rigid movement’ should be replaced
by ‘isometry’.
(5) This assertion is not satisfactory, since Euclidean proofs rely on the notion of
distance which is not defined here.
We also remark that the result on the orthocenter holds when two altitudes intersect
each other but the three altitudes may be parallel.
(6) A parallelogram is a quadrilateral with congruent opposite angles and sides.
(7) A regular polygon is a polygon with congruent sides and congruent angles.
(8) Actually, hyperbolic circles are true Euclidean circles. The reader may prove it
by looking at Figure 50 (Hint: show that the intersection of the Euclidean line AF
with the degenerate line through C is the second point of the circle on this degenerate
line).
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