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1 Statement

Is it possible to construct a solid, with 5 faces for example, such that the probability of
getting each face is the same, 1/5 in the example with 5 faces.

The problem’s statement is equivalent to constructing a 5-sided fair dice. Such dice with
4 and 6 faces respectively already exist and are quite popular (for 4 faces there is the tetra-
hedron and for 6 faces the cube).

In this article we will try to construct a 5-sided dice and from there an n-sided dice
(n ≥ 4).

2 Introduction

To understand the notion of fairness we will first look at some dice that are considered
to be fair.

2.1 Platonic solids

If a solid has all of it’s faces congruent, regular polygons, with the same number of faces
meeting at each vertex, then, by symmetry, it has the same probability of landing on each
of the faces and therefore it is said to be fair.

There are only 5 existing solids that satisfy this property, and they are called the Pla-
tonic solids. These solids are the tetrahedron, cube, octahedron, dodecahedron and the
icosahedron.

Definition (Platonic solid). A convex polyhedron is a Platonic solid if and only if:

(i) all its faces are congruent convex regular polygons

(ii) all its dihedral angles are congruent
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(iii) the same number of faces meet at each of its vertices

Each Platonic solid can therefore be denoted by a symbol {p, q} where

(a) p is the number of edges (or, equivalently, vertices) of each face

(b) q is the number of faces (or, equivalently, edges) that meet at each vertex

The symbol {p, q}, called the Schläfli symbol, gives a combinatorial description of the
polyhedron[1]. The Schläfli symbols of the five Platonic solids are given in the table below:

Table 1: The Schläfli symbols of the five Platonic solids
Polyhedron Vertices Edges Faces Schläfli symbol
Tetrahedron 4 6 4 {3, 3}

Cube 8 12 6 {4, 3}
Octahedron 6 12 8 {3, 4}

Dodecahedron 20 30 12 {5, 3}
Icosahedron 12 30 20 {3, 5}

This five solids are equally likely to land on any of their faces if rolled at random on any
surface. This is true because the Platonic solids are perfectly symmetrical. Any other solid
will not be perfectly symmetrical, and therefore we cannot conclude whether or not a given
solid is fair or not only by considering its symmetries.

2.2 The idea for obtaining an n-sided dice

In an article published in The American Mathematical Monthly, Vol. 96, No. 4. (Apr.,
1989) by Persi Diaconis and Joseph B. Keller[2] the two authors defined the notion of ’fairness
by symmetry’ with which they offered a detailed description of fair dice (solids).

At the end of the article, the authors gave the following example with regard of how to
construct a fair polyhedra:

As an example, let us consider an infinite prism with a regular n-gon as its cross section.
Let us cut it with two planes a distance L apart perpendicular to its generators, to produce
a polyhedron with n + 2 faces. For L large this solid has very low probability of landing on
either of its two ends, whereas, for very small L it has a high probability of landing on one of
them. Therefore by continuity there is some value of L for which it has the same probability
of landing on any one of its n + 2 faces. When n is odd this yields a fair dice with an odd
number of faces.

In this article we will build a model of a fair 5-sided (and in general n-sided) dice based
on this example.
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3 Creating the 5-sided dice

Remark. In this section, when referring to dice, we are only referring to dice that have right
regular triangular prismatic shape.

Also, all the dice are considered to be homogeneous. This means that they have the exact
same physical properties at every point.

Figure 1: An example of 3D printed dice. They all have the same base side length, but different
heights.

3.1 Theoretical model

In this section we aim to prove that 5-sided fair dice exist by defining a surjective
function.

Afterwards, we will hypothesize a possible shape for the graph of the above-mentioned
function.

3.1.1 System of axioms

Definition (Similar objects[3][4]). In Euclidean geometry, two objects are similar if and
only if one can be obtained from the other by a scaling (enlarging or reducing), possibly with
additional translation, rotation or reflection.

We based our approach on some intuitive aspects (supported by the experimental part,
as we will see later). Not being aware of the existence of any theoretical proofs, we choose
to state them as axioms:

Axiom 1. Two similar dice have the same probability of landing on one of the similar faces.

Axiom 2. For a prismatic dice, if the base area remains constant, the probability of landing
on a rectangular face increases with the area of that face. [1]
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Axiom 3. Two dice having the same fixed base side length l and two comparable heights
(h1 ' h2), will also have comparable probabilities of landing on a rectangular face (p�1 '
p�2).

3.1.2 The model

Let us consider a regular right triangular prism of base side length l and height h.
Because of the prism’s rotational symmetry, it follows that the two triangular faces will

have the same probability of being rolled and so will the three rectangular faces. One
rectangular face can be obtained form another by rotating the prism clockwise either 120◦

or 240◦. For the triangular faces, one can be obtained form the other by a 180◦ rotation.
A fair 5-sided dice will have the same probability of landing on each of the 5 faces,

namely: pi =
1

5
for all i = 1, ..., 5. Therefore, the probability that a fair 5-sided prism will

land on either one of its two triangular faces will be: p4 = 2 · pi =
2

5
= 0.4.

We can thus conclude that a 5-sided prismatic dice is fair if and only if

p4 = 0.4

We will denote by r the ratio of the base side length to the height and we will call r the
prism ratio:

r =
l

h
[2]

Given two prisms of the same ratio both of them will have the same probability of landing
on a given face, because, in principle, they are the same prism, one of them being just a
scaling -up or down- of the other (see Axiom 1). Therefore, there is a unique probability
value associated with every r, which means that any correspondence which associates r to a
certain probability value f(r) is a function.

Considering this, let us define the following function:
pµ : (0,∞)→ (0, 1) such that
pµ(r) is the probability that, after a random roll, a prism of ratio r will land on
either one of the two triangular faces.

Here µ represents a constant that depends on the surface on which the dice is rolled. This
constant does not affect the behavior of the function, only affecting the function’s outputs.

For example, let us consider two identical dice one of them being rolled on a wooden table
and the other on a stack of paper (or an open notebook). A few experimental results easily
prove that for the same roll, the dice being rolled on the wooden table bounces back higher
than the one rolled on the paper. This happens because wood and paper have different
coefficients of restitution[5] that is wood and paper have different energy absorption ratios.
When a small object falls freely on a surface, part of the object’s energy is lost to heat and
plastic deformation. The energy loss is higher for paper and lower for wood and thus the
object will bounce back higher on wood than on paper.
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Therefore, our function depends on the prism through the prism ratio r and also on the
surface on which the dice is rolled through µ.

Now, let us state and prove some of the properties of the function pµ:

Property 1. The function pµ is strictly increasing.

Property 2. The following equalities hold for pµ:

(i) lim
r→∞

pµ(r) = 1

(ii) lim
r→0

pµ(r) = 0

Property 3. The function pµ is continuous.

Property 4. The function pµ is surjective (bijective).

It now follows from Property 4 that there is a ratio r0 such that pµ(r0) = 0.4 and thus
any prism of such ratio will have the same probability of landing on each of its 5 faces.

Proofs:

1. Let us consider two prisms, of ratio r1 =
l1
h1

and another of ratio r2 =
l2
h2

, such that

r2 > r1.
Now, the prism of ratio r2 is equivalent to a prism of the same ratio which has the base

side length equal to l1, because this third prism is just a scaling of the second prism with a

factor of
l1
l2

(they are similar- see Axiom 1).

Therefore, this third prism will have a height of h3 = h2 ·
l1
l2

Now r1 =
l1
h1

and r2 =
l1
h3

and since r2 > r1 it follows that h1 > h3.

Thus, the triangular areas of both prisms are equal, but the rectangular area is greater
for prism 1 than for prism 3. That is:

A41 = A43, A�1 > A�3

It now follows from Axiom 2 that the third prism will have a smaller probability of
landing on the rectangular faces than the first prism.

And since the probability of landing on the rectangular and the probability of landing
on the triangular faces are complementary (add up to 1), we have:

1− pµ(r2) < 1− pµ(r1)⇔ pµ(r1) < pµ(r2)

Thus ∀ r1 < r2 ∈ (0,∞) we have pµ(r1) < pµ(r2) which is equivalent to:
The function pµ is strictly increasing.
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Figure 2: (From left to right) the first prism has a ratio r1 =
1

2
, the second one has a ratio

r2 =
1.5

1.5
= 1, and the third one is equivalent to the second one having a ratio r2 =

1

1
= 1. The

third prism has the same base side length as the first one, but has a smaller height h3 = 1 < 2 = h1.

2. Let us fix a base side length l, and vary only the height h to produce a variation of r.
As the height decreases more and more, the prism is less likely to land on the rectangular

face, because the area of the rectangle decreases while the area of the triangle stays the same
(see Axiom 2). A prism of height 0 is essentially a 2D triangle, which has probability 1 of
being rolled on either one of the 2 faces.

Therefore lim
r→∞

pµ(r) = lim
h→0+

pµ

(
l

h

)
= 1 which is equivalent to:

The line y = 1 is a horizontal asymptote for the function pµ.
Moreover, as h gets larger and larger the area of the rectangle increases while the area

of the triangle stays the same. Thus, it follows from Axiom 2 that a prism of infinite height
never lands on the triangular faces (in fact it does not even have those faces anymore).

That is lim
r→0

pµ(r) = lim
h→∞

pµ

(
l

h

)
= 0.

3. [3] As above, let us fix l and vary h to produce a variation of r.

Now, considering two dice of ratios R =
l

H
(arbitrarily fixed) and r =

l

h
(variable)

Axiom 3 is equivalent to: for every ε > 0, there exists a δ such that

|h−H| < δ ⇒ |p�1 − p�2| < ε

and since the probability of landing on the rectangular and the probability of landing on the
triangular faces are complementary we get that:

p�1 − p�2 = (1− pµ(r))− (1− pµ(R)) = pµ(R)− pµ(r)

Thus, we have:

∀ ε > 0,∃ δ > 0 such that ∀ H > 0 with |h−H| < δ ⇒ |pµ(r)− pµ(R)| < ε
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Page 7



Now, we have only to prove that for all δ > 0 for which |h−H| < δ there exists δ′ > 0
such that |r −R| < δ′.

This follows from the equivalences:

|h−H| < δ ⇔ H − δ < h < H + δ ⇔ H − δ < l

r
< H + δ ⇔ l

H + δ
< r <

l

H − δ

⇔ l

H + δ
− l

H
< r −R <

l

H − δ
− l

H

⇔ − l · δ
H(H − δ)

< − l · δ
H(H + δ)

< r −R <
l · δ

H(H − δ)

⇒ |r −R| < l · δ
H(H − δ)

=
δ ·R(
l

R
− δ
) not.

= δ′

Therefore, we can conclude that:

∀ ε > 0,∃ δ′ > 0 such that ∀ R > 0 with |r −R| < δ′ ⇒ |pµ(r)− pµ(R)| < ε

which, by the epsilon-delta definition of a limit is equivalent to lim
r→R

pµ(r) = pµ(R) for all

R > 0. This in fact means that:
The function pµ is continuous.

4. Since pµ is continuous and lim
r→∞

pµ(r) = 1, lim
r→0

pµ(r) = 0 it follows from the Intermedi-

ate Value Theorem that for all y ∈ (0, 1) exists x ∈ (0,∞) such that pµ(x) = y.
Thus Im pµ ⊃ (0, 1). Since (0, 1) is also the codomain of pµ, we have:

Im pµ = (0, 1)

That is pµ is a surjection. Moreover, since pµ is strictly increasing, it is an injection,
and thus a bijection.

Therefore, there is a ratio r0 such that pµ(r0) = 0.4. Any prism of such ratio will have
the same probability of landing on each of its 5 faces.

However, this model is not sufficient to determine the exact ratio r0 that will yield such
a dice.

3.1.3 Analyzing the shape of the functions’ graph

[4] In this section we will analyze the graph of pµ and search for a function m, defined
by using elementary functions, which has a similar graph.

Even though the function m is only a ’rough’ approximation of pµ, section 3.3.2 will show
that for a certain µ, m behaves very well around the value of x = r0 which is the ratio of
the ideal prismatic dice.

MATh.en.JEANS 2019-2020 [Colegiul Naţional ”Emil Racoviţă” Cluj-Napoca ]
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Because the line y = 1 is a horizontal asymptote for pµ and because pµ(x) ∈ (0, 1) for all
x ∈ (0,∞) we can deduce that there exists a value a such that pµ is concave for all x ≥ a.
This is true because if there would be no such value a, then the function would be convex
and thus it would be impossible to have the asymptote y = 1.

Therefore we have p′′µ(x) < 0 for all x ∈ (a,∞) , which tells us that the function is
concave for the second part.

To determine the convexity of the function for x ∈ (0, a) we will analyze the behavior of
pµ in the vicinity of x = 0.

As x is close to 0 adding a small amount dx will result in a smaller increase in the outputs
of the function than adding the same amount dx to a value further away from 0.

That is pµ(x + dx) − pµ(x) < pµ(y + dx) − pµ(y) for arbitrary values x and y such that
0 < x < y < a.

Dividing this last equation by dx and applying the limit as dx→ 0 we get that p′µ(x) <
p′µ(y).

It follows that p′µ is strictly increasing for x values smaller than a.
Therefore p′′µ(x) > 0 for x ∈ (0, a) which means that pµ is most likely convex for the first

part.
Notice that this last result is based on physical intuition and this is the reason why it

was stated that pµ is most likely convex. The experimental results of section 3.3.2 will show
that this is indeed the case.

We will try to find a possible function m and graph it. Such a function m would be
convex for x ≤ a and concave for x ≥ a.

For this let us define m : (0,∞)→ (0, 1) such that m respects all of pµ’s properties.
A function which respects some of the above-mentioned properties (Properties 1, 2 (i),

3, and 4) and which is convex for x < 0 = a and concave for x > 0 = a, is the:

Hyperbolic tangent[6] tanh : (−∞,∞)→ (−1, 1) defined as tanh(x) =
ex − e−x

ex + e−x
.

However, the range of tanh does not correspond to the range of m and thus it has to be
modified. This can be done by adding 1 and then dividing the resulting function by 2.

Let us consider the function f : (0,∞)→ (0, 1) such that

f(x) =
tanh(x− a) + 1

2

Here, the parameter a > 0 is the one presented earlier and describes the inflection point
(i.e. the point at which the f changes from being convex to being concave)

This function has the appropriate range and satisfies lim
x→∞

f(x) = 1 (Property 2 (i)), but

it does not satisfy lim
x→0

f(x) = 0 (Property 2 (ii)) since

lim
x→0

f(x) =
tanh(−a) + 1

2
>
−1 + 1

2
> 0

This means that we have to change the lower part of our function f(x).
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For that let us consider the power function g : (0,∞) → (0,∞) such that g(x) = c · xb
where b and c are constants which are to be determined from the properties of pµ.

Since lim
x→0

g(x) = 0 the function g has Property 2 (ii), a property which f did not possess.

Therefore, we can obtain a possible function by defining the piecewise function m :

m(x) =

{
g(x) for x ≤ a

f(x) for x ≥ a
[5]

Now we only need to determine the two constants b and c for which m is continuous and
for which the passing from f to g is smooth (i.e. the derivative of m is continuous).

These last conditions can be rewritten as:{
f(a) = g(a)

f ′(a) = g′(a)
⇔


1 + tanh(a− a)

2
= c · ab

1− tanh2(a− a)

2
= b · c · ab−1

⇔


c · ab =

1

2
b

a
· c · ab =

1

2

⇔

b = a

c =
1

2 · aa

Figure 3: An example showing the function m2. The inflection point has coordinates Ia(a,
1
2) which

in our case is I2(2,
1
2).

Therefore g(x) =
1

2
·
(x
a

)a
which gives us the function:

ma : (0,∞)→ (0, 1), ma(x) =


1

2
·
(x
a

)a
for x ≤ a

tanh(x− a) + 1

2
for x ≥ a

3.2 Physical model

This model aims to determine the ratio r0 for which an ideal 5-sided dice is fair. The
physics involved in determining the result is applied to an ideal case, and thus the result will
not depend on the surface through µ as stated in the theoretical model.
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3.2.1 Boltzmann probability distribution

Definition (Boltzmann distribution[8]). [6] In statistical mechanics, the Boltzmann distri-
bution is a probability distribution that gives the probability of a certain state as function of
the state’s energy and temperature of the system to which the distribution is applied[8]. The
probability distribution is the following[9]:

pi =
1

Q
e
−
εi
kBT

Here pi represents the probability of state i, εi is the energy of state i, kB is the Boltzmann
constant and T represents the temperature of the system.

The denominator Q is called the canonical partition function, and is given by the formula:

Q =
M∑
i=1

e
−
εi
kBT

where M represents the number of states accessible to the system.

From this definition, it follows that
M∑
i=1

pi = 1.

This distribution shows that a state with a lower energy will have a higher probability
of being achieved than a state with a higher energy [7]. This can be seen by computing the
ratio of probabilities for two states, i and j :

pi
pj

= e

εj − εi
kBT

3.2.2 Predicting the ideal value of r0

Now, considering the dice as a system, there are only two states in which a dice can land
after a roll: either on a rectangular face, or on a triangular face.

For a 5-sided dice to be fair, we need to have pi =
1

5
for all i = 1, ..., 5. This implies

that p41 = p42 = p�1 = p�2 = p�3 =
1

5
and therefore, the probability of landing on any

triangular face must be equal to the probability of landing on any rectangular face.
This in fact means that, for a 5-sided dice to be fair, the ratio of these two probabilities

has to be 1:

1

5
1

5

= 1 =
p4
p�

= e

ε� − ε4
kBT ⇔ ε4 = ε�

Since the dice is at rest on the table it has no kinetic energy, only gravitational potential
energy.
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Definition (Gravitational Potential Energy[10]). The gravitational potential energy of an
object relative to a reference level (the table on which the dice is rolled in our case) is defined
as Ug = mg∆h where m represents the mass of the object, g is the gravitational acceleration,
and ∆h represents the height difference between the reference level and the center of mass of
the object.

Therefore, the last equation becomes:

Ug4 = Ug� ⇔ ∆h4 = ∆h�

Figure 4: The side-view of the dice in the two possible states: landed on a rectangular face (left)
and on a triangular one (right). The positions of the centers of mass relative to the reference level
(table) are denoted by h1 and h2.

For a homogeneous dice, the center of mass will be located at half of the prism’s height,
right above the centroid of the base triangle.

Therefore, when the prism will land on the rectangular face we will have:

∆h� = h1 = G1M1 =
CM1

3
=

l
√

3

2
3

=
1

2
· l√

3

and when the prism will land on a triangular face we will have

∆h4 = h2 = G2M2 =
EF

2
=
h

2

⇒ ∆h4 = ∆h� ⇔
l0√
3

= h0 ⇔ r0 =
l0
h0

=
√

3

Thus, the physical model predicts that the ratio r0 for which a 5-sided dice is fair is
r0 =

√
3 ' 1.7320
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3.3 Experimental model

This model aims to experimentally validate the results of the first two models. All of the
measurements were conducted with the dice being rolled on a Plexiglas surface (our µ was
µ = µplexiglas) and thus the final result is dependent on the chosen surface.

We created real-word models of dice with the help of a 3D printer. Unfortunately, the
usage a 3D printer does not guarantee that a dice is perfectly homogeneous, and therefore
this could be considered an error source for our experiment.

3.3.1 Methodology

Using a 3D printer, we created 35 dice, each with a different ratio.
All of these dice had the same base side length of l = 20mm , but different heights,

ranging form h35 = 6.6mm to h1 = 18.4mm.
For simulating dice throwing we used a collaborative robotic arm with 6 degrees of

freedom, a “cobot”, from Universal Robots. A cobot is designed to replicate the movements
of the human hand, and work together with humans, automating repetitive, boring tasks,
allowing humans to focus on more creative areas.

We also used a photo camera, which took a picture of every roll, allowing us to process
it and decide whether the dice landed on a triangular face or on a rectangular one.

The cobot was connected to a Raspberry PI 3 (single board computer), which acted as a
communication gateway between the robot and the photo camera. The dice was then placed
in a small container with a transparent cap, attached to the cobot arm. To simulate a dice
throw, the cobot moved it’s arm for about 3 seconds after which it stopped the container
above camera. Then, the cobot sent a signal to the camera, trough the Raspberry PI, with
the help of a Python script translate. The camera would take a picture and then the process
would begin again.

We did this process 1000 times for each dice, obtaining 1000 dice rolls in less than 2
hours, which allowed us to gather large amounts of data in a short time (Each roll took
about 5-6 seconds, which add up to 1 h 20 min -1 h 40 min per dice).

3.3.2 Results and analysis

In this section, we are going to denote by p a function that approximates pµ and has all
of its properties. Our aim is to find the best possible approximation function p.

The data we gathered is presented at the end of the document, in table 3 in the Appendix
After considering this scatter plot, we decided to split the function p into 3 branches (not

just 2 as in the theoretical model):

p : (0,∞)→ (0, 1), p(x) =


f(x) for x ≤ x1

g(x) for x1 ≤ x ≤ x2

h(x) for x ≥ x2

with f and g being 2nd degree polynomials and h being a similar function to the one described
in the theoretical model.
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Figure 5: The setup that we used to collect the experimental data: the robotic arm (right), Raspberry
PI (encased in the yellow-green lego box), the photo camera and the Python script (rolling on the
TV).

Figure 6: Based on this scatter plot we have determined a possible graph for the function p.

That is h(x) = m · tanh(rx+ q) + n, with m,n, r and q being constants.
Now, to choose the values x1 and x2 we again analyzed the plot to better characterize
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the behavior of p(x).
Noticing that around the value x = 1.35, the function changes convexity, we have deter-

mined the first value: x1 = 1.35.
For the second value, we will choose x2 = 2.5, for reasons which will be explained later.
Now, the function p has the following form:

p(x) =


ax2 + bx+ c for x ≤ 1.35

dx2 + ex+ f for 1.35 ≤ x ≤ 2.5

m · tanh(rx+ q) + n for x ≥ 2.5

Taking into account Property 2 from the theoretical model, we get that:lim
x→0

p(x) = 0

lim
x→∞

p(x) = 1
⇔

{
c = 0

m+ n = 1
⇔

{
c = 0

n = 1−m

Since most of the measurements are in the interval [1.35, 2.5] we can get an accurate
representation of this branch by putting the values in an Excel document and adding a
trendline. However, we will not be using the data from table 3, but rather pairs (x, y) that
are more likely to be on the graph of g(x).

The chosen (x, y) pairs are presented in table 2:

Table 2: The values of x and y from the 12 chosen pairs
x 1.35 1.375 1.4375 1.5 1.625 1.75 1.875 2 2.125 2.25 2.375 2.5
y 0.275 0.295 0.33 0.355 0.39 0.44 0.475 0.505 0.53 0.555 0.575 0.595

The values of y in this table are obtained by determining the correspondent value of y in
Figure 6 and dividing it by 1000 (such that it is in the interval [0, 1]).

We graphed this pairs and obtained the following graph and trendline:
Thus we have:

g(x) = −0.1492x2 + 0.8401x− 0.5769

We are expressing the constants d, e and f with 4 decimal points, because from the 5th

decimal place onward, the decimals are impossible to control (in fact, even the 3rd and 4th

decimals are hard to control, but they are needed for precision). All other constants will be
expressed with 4 decimal points as well.

Remark. The reason for which x2 was chosen to be 2.5 is that for x2 < 2.5 there would be
less data available to accurately graph g, and for x2 > 2.5 there would be more data to graph
g, but less data that would be predicted by function h, and thus h would be an inaccurate
representation.

Now, let us find the parameter m. Considering r and q fixed, and changing m we notice
that m determines both the initial ”height” of the the function h(x), that is

h(2.5) = m · tanh(2.5r + q) + 1−m
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Figure 7: The representation of y = g(x), ∀x ∈ [1.35, 2.5].

and the also curve of the function.
For the function h to have a similar curve to that of the function g (this is needed because

the graph of h must prolong the graph of g), the value of m must be around 0.6. For m < 0.6,
the curvature of h will be smaller than that of g (blue curves), and for m > 0.6, it will be
larger (green curves).

Figure 8: The function h(x) with the parameters r and q fixed (r = 0.5 and q = −1.2) for different
values of m: m = 0.6 (red), m > 0.6 (green) and m < 0.6 (blue).

Thus, we can correctly assume that 0.6 is a convenient value for m.
Now, the possible function looks like:

p(x) =


ax2 + bx for x ≤ 1.35

−0.1492x2 + 0.8401x− 0.5769 for 1.35 ≤ x ≤ 2.5

0.6 · tanh(rx+ q) + 0.4 for x ≥ 2.5

The last 4 constants can be determined from the conditions:

MATh.en.JEANS 2019-2020 [Colegiul Naţional ”Emil Racoviţă” Cluj-Napoca ]
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(a) The function p is continuous.

(b) The derivative of the function p is continuous (i.e. the passing from one branch of the
graph to another is ”smooth”).

These can be rewritten as: (1):

{
f(1.35) = g(1.35)

f ′(1.35) = g′(1.35)
and (2):

{
h(2.5) = g(2.5)

h′(2.5) = g′(2.5)

(1)⇔

{
1.352a+ 1.35b = −0.1492 · 1.352 + 0.8401 · 1.35− 0.5769

2 · 1.35a+ b = −2 · 0.1492 · 1.35 + 0.8401

⇔

{
1.8225a+ 1.35b = 0.285318

2.7a+ b = 0.43726
⇔

{
a = 0.167343...

b = −0.0145(6)

(2)⇔

{
0.6 · tanh(2.5r + q) + 0.4 = −0.1492 · 2.52 + 0.8401 · 2.5− 0.5769

0.6 · r · (1− tanh2(2.5r + q)) = −2 · 0.1492 · 2.5 + 0.8401

⇔

{
0.6 · tanh(2.5r + q) = 0.19085

0.6r(1− tanh2(2.5r + q)) = 0.0941
⇔

tanh(2.5r + q) = 0.31808(3)

r =
0.0941

0.6
· 1

1− tanh2(2.5r + q)

⇔

{
tanh(2.5r + q) = 0.31808(3)

r = 0.17448745...
⇔

{
q = tanh−1(0.31808(3))− 2.5r

r = 0.17448745...

⇔

{
q = −0.10670538...

r = 0.17448745...
Thus the 4 constants are:


a ' 0.1673

b ' −0.0145

r ' 0.1744

q ' −0.1067

which give us the

function:

p(x) =


0.1673x2 − 0.0145x for x ≤ 1.35

−0.1492x2 + 0.8401x− 0.5769 for 1.35 ≤ x ≤ 2.5

0.6 · tanh(0.1744x− 0.1067) + 0.4 for x ≥ 2.5

This function is an accurate representation of the experimental data from Table 3 (in
fact, for 1.35 ≤ x ≤ 2.5 the function is the most accurate 2nd degree polynomial representa-
tion).

Now, by intersecting the function p with y = 0.4 we can obtain an experimental value
for the ratio r0 for which a 5-sided dice rolled on Plexiglas is fair.

Moreover, since the x value for which pµ = 0.4 is located in the interval [1.35, 2.5], it
is determined to an even higher degree of accuracy than other values located outside this
interval.

Solving the equation pµ = 0.4 we get the solution r0,exp ' 1.6412 which is around the
predicted physical value of r0,phy =

√
3 ' 1.7320.
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Figure 9: The graph of the approximation function p.

The relative error, ε, can be computed by the formula:

ε =
∆r

r0,phy
· 100% =

r0,phy − r0,exp
r0,phy

· 100% ' 5.24%

Thus, the experimental model validates both the theoretical model and the physical one.
The experiment’s relative error of 5.24% is well within the acceptable error range. [8]

4 Generalization and further research

In this section, we will present an extension of both the theoretical and physical models
and prove that it is possible to construct a fair n-sided dice for any n ≥ 4.

We will also analyze a different model for constructing a 2n-sided fair dice.

4.1 Theoretical generalization

For n = 4, a fair sided dice is the tetrahedron (Platonic solid). No solid with 4 faces can
be constructed using a prismatic model, since any prism has a number of faces ≥ 5.

However, for n ≥ 5 we will use a prismatic model, just as we used the triangular prism
for the 5-sided dice.

Let us consider a regular (n−2)-gonal right prism (a right prism, having the bases regular
(n− 2)-gons and the lateral faces rectangles) of base side length l and height h.

Using the same reasoning as for the triangular prism, we can define the ratio of the prism
as:

r =
l

h

Now, for a fixed number n, let us define p(n,µ) : (0,∞)→ (0, 1) such that:
p(n,µ)(r) is the probability that, after a random roll, a prism of ratio r will land
on either one of the two bases (regular (n− 2)-gons).
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This is, in fact, an extension of the function defined in section 3.1.2 (the function
p(5,µ) is the same as pµ from section 3.1.2), and using the same methods we can prove that
this function has all the properties of its particularization p(5,µ).

A fair n-sided dice will the same probability of landing on each of the n faces, namely:

pi =
1

n
for all i = 1, ..., n. Therefore, the probability that a fair n-sided prism will land on

either one of its two bases will be: p4 = 2 · pi =
2

n
.

Since the function p(n,µ) is surjective (see Property 4), it follows that for every n there is

a ratio r(n,0) such that p(n,µ)(r(n,0)) =
2

n
and thus any prism of such ratio will have the same

probability of landing on each of its n faces.
This ratio will of course be dependent on the surface on which the dice is rolled, depen-

dence described by the surface constant µ, just as it was for the 5-sided dice.

In conclusion, a fair n-sided dice can be constructed, no matter the value of n(≥ 4).
Yet, for some specific values (n = 12, n = 20 for example) there are other fair shapes
(dodecahedron for n = 12 and icosahedron for n = 20) that are not predicted by our
prismatic model.

Our article presents only an example of a family of fair n-sided dice, not claiming to
characterize all of the possible fair n-sided dice.

4.2 Physical generalization

Using the same analysis as in section 3.2 and taking into account that a prismatic n-sided
dice can only be in two possible states after a throw (landing either on a base or on a lateral
face) we can deduce that an n-sided dice is fair if and only if:

∆h1 = ∆h2

where ∆h1 and ∆h2 represent the height difference between the reference level and the
prism’s center of mass, in states 1 (landed on a rectangular face) and 2 (landed on a base)
respectively.

For the general case, for a regular (n− 2)-gon we have:

∠AOB =
2π

n− 2
⇒ ∠MOB =

π

n− 2

Then

∆h1 = OM =
MB

tan(MOB)
=
l

2
· 1

tan

(
π

n− 2

)
and

∆h2 = O
′
M
′
=
h

2
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Figure 10: An example for n = 7. Side-view of the n-sided dice in its two possible states: landing
on a rectangular face (left) and on a regular (n− 2)-gonal one (right). The positions of the centers
of mass relative to the reference level (table) are denoted by h1 and h2.

∆h1 = ∆h2 ⇔ r(n,0) =
l(n,0)
h(n,0)

= tan

(
π

n− 2

)
Therefore, the predicted value for which the n-sided dice is fair is r(n,0) = tan

(
π

n− 2

)
,

which is a generalization of the formula found for r0 in section 3.2.2 (that formula predicted
r(5,0) =

√
3 which is exactly tan(π

3
)).

However, this is an idealized result, as it does not take into account the surface on which
the dice is rolled. The result is nonetheless a reasonable approximation for real value of
r(n,0).

4.3 The 2n-sided fair dice

Creating an odd sided fair dice is much more complicated than creating an even one,
because an even sided dice has much more symmetries than an odd sided one.

A possible model for an 2n-sided fair dice is the following:
Two n-gonal pyramids sharing a common base, and having the same height. This figure

could be obtained by gluing together the bases of two identical n-gonal pyramids.
This object has the same probability of landing on each face because of it’s symmetries:

(a) It is symmetric with respect to the plane of the polygon

(b) All of it’s faces have the same shape and each shares a common edge with only 3 other
faces
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Figure 11: An example of a 2n-sided fair dice for n = 9. Points V1 and V2 are symmetric with
respect to the polygon’s center.

(c) Every face meets two other faces at an angle (say α) and the third one at another angle
(say β) (for example face V1BC meets faces V1AB and V1CD at the same angle-α-
and face V2BC at a different angle-β)

The only two characteristics that a Platonic solid (section 2.1) has that this shape does
not are: the polygons are not necessarily regular (in fact, for n ≥ 6 the triangles can never
be equilateral) and the dihedral angles are not all congruent.

In fact, for n = 4, for a suitable height value, we get the octahedron, which is undoubtedly
fair.

Because of its many symmetries, this shape is supposedly fair, no matter the value of the
height, but a rigorous mathematical proof is still being researched into.

4.4 Further research

We are currently investigating other possible shapes for a fair n-sided dice, not only the
prism.

We are also developing a model that would help us to better understand the fairness of
the bipyramidal shape described in section 4.3.
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Appendix-Experimental Data

Table 3: Experimental data
Dice nr. Height(h) Ratio(r) Nr.triangles Nr.rectangles Total

1 18.4 1.087 139 861 1000
2 18 1.111 149 851 1000
3 17.6 1.136 155 845 1000
4 17.2 1.162 180 820 1000
5 16.8 1.190 221 779 1000
6 16.4 1.219 219 781 1000
7 16 1.250 248 752 1000
8 15.6 1.282 271 729 1000
9 15.2 1.315 267 733 1000
10 14.8 1.351 295 705 1000
11 14.4 1.388 307 693 1000
12 14 1.428 322 678 1000
13 13.6 1.470 340 660 1000
14 13.2 1.515 354 646 1000
15 12.8 1.562 390 610 1000
16 12.4 1.613 400 600 1000
17 12 1.666 429 571 1000
18 11.7 1.709 416 584 1000
19 11.4 1.754 435 565 1000
20 11.1 1.801 449 551 1000
21 10.8 1.851 462 538 1000
22 10.5 1.904 479 521 1000
23 10.2 1.960 477 523 1000
24 9.9 2.020 515 485 1000
25 9.6 2.083 509 491 1000
26 9.3 2.150 543 457 1000
27 9 2.222 530 470 1000
28 8.7 2.298 541 459 1000
29 8.4 2.381 565 435 1000
30 8.1 2.469 550 450 1000
31 7.8 2.564 574 426 1000
32 7.5 2.666 610 390 1000
33 7.2 2.777 615 385 1000
34 6.9 2.898 627 373 1000
35 6.6 3.030 640 360 1000
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EDITION NOTES

[1] The additional assumption that the base is a regular polygon is needed. Consider for
instance the case in which the bases are hexagons with equal sides, but in which two opposite
angles are very small, so that the other four angles are close to 180 degrees. Because of the
position of the center of mass, the probability that the prism lands on a face forming the
small angle is always zero, independently of the area of that face.

[2] Since, by Axiom 1, the only relevant datum is r, the whole treatment could have been
remarkably simplified by setting l = 1, or h = 1. This is actually partially done in the proof
of Properties 2 and 3, where l is fixed.

[3] The following proof could have been rather simpler. Axiom 3 expresses, in an informal
way, the continuity of p� as a function of h. Then, since pµ is obtained from p� by means
of elementary operations and, for a fixed value of l, h is a continuous function of r, we can
conclude that pµ is continuous as function of r.

[4] In this subsection, it should be emphasized that there are many possible choices for the
components of the function m. Also, something should be said about why those components
are chosen. Why not arctan instead of tanh, for instance? Also the choice of the point a as
the point where m changes its concavity seems to be rather arbitrary.
In the second paragraph of this section it is observed that the function m behaves very well
around the value of x = r0 . . . , which seems to confirm the choice of this function. Given that
m is piecewise defined, though, this possible confirmation regards only a ‘piece’ of m, the
one in which m(x) is near to 0.4 (see Section 3.3.2). In particular, there is no confirmation
for the choice of tanh as a part of m.

[5] In the definition of piecewise functions like this, inequality must be strict inequality in one

of the two cases. We should have, for instance, m(x) =

{
g(x) for x < a

f(x) for x ≥ a
. The continuity

of this function in a can be proved by showing that lim
x→a−

g(x) = lim
x→a+

f(x) = f(a).

Similarly, we have m′(x) =

{
g′(x) for x < a

f ′(x) for x > a
and, to show that m is derivable in a, we have

to prove that left and right derivatives of m in a exist and coincide.
Everything works in the paper because the functions that we are considering are continuous
and have continuous derivatives. But in general continuity and derivability have to be proved
as described above.

[6] Boltzmann distribution is generally related to particle systems. This section should have
contained some, possibly informal, explanations about why Boltzmann distribution can be
used also in the context of the work.

[7] This conclusion can be simply obtained by observing that the function x 7→ e−x is
decreasing.
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[8] As observed in note [4], the experimental model can possibly validate only a part of the
theoretical model. Moreover, a natural question here is whether the error is to be viewed as
a consequence of statistical fluctuations or as a sign that the model can be improved?
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