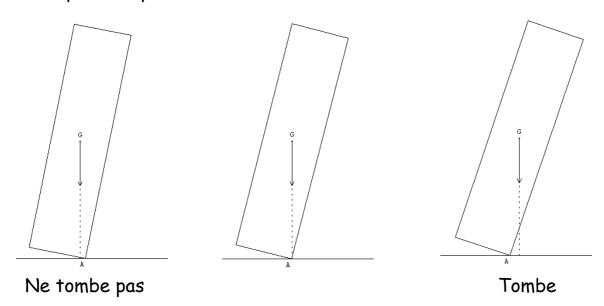

Une avalanche de dominos.

Par des élèves de 1°5 du lycée d'Altitude de Briançon.
2005

ALBERTI Fanny
PELLETIER Maxime
TOYE Arnaud
VIOLIN Chloé


Sujet: Comment disposer des dominos identiques sur une longueur de un mètre pour qu'ils tombent le plus vite possible?

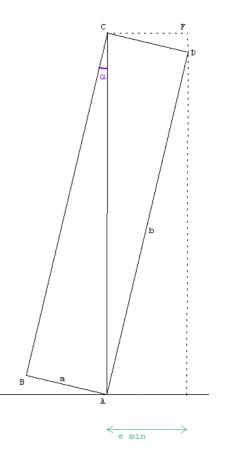
Quand est ce qu'un domino commence à tomber

?

Un domino commence à tomber quand la projection de son centre de gravité dépasse le point de rotation.

Pour qu'il y ait une réaction en chaîne des dominos, il faut qu'ils soient séparés de cette distance minimale que l'on appellera e_{min} .

Calcul de la distance minimale e min:

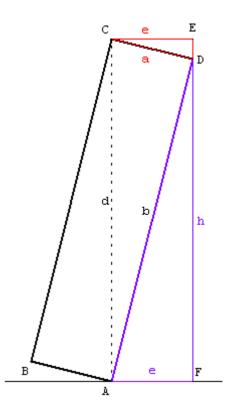

A partir du dessin ci-contre, on obtient:

$$tg(\alpha) = \frac{a}{b}$$
, soit $\alpha = tg^{-1}(\frac{a}{b})$ et

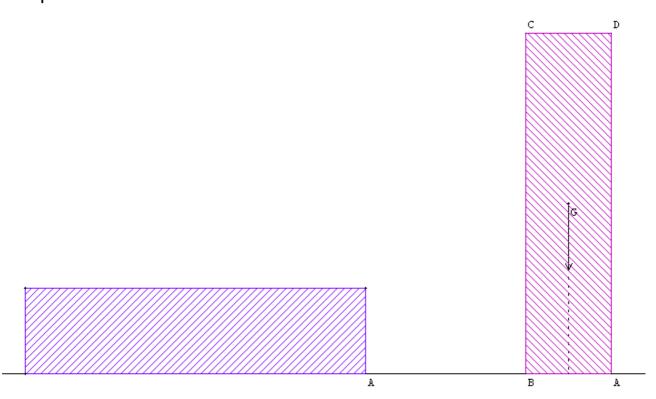
$$\underset{\text{ainsi}}{e_{\mathit{min}}} = a \cos[\mathit{tg}^{-1}(\frac{a}{b})]$$

Dans nos mesures, nous avons travaillé avec des dominos de taille a=1 cm et b=7.5 cm. Dans ce cas, le e minimum est 0.991 cm

Plus tard dans nos recherches, nous avons refait les calculs de e_{min} sans utiliser la trigonométrie.


Tout d'abord, il faut remarquer que la diagonale du domino est verticale. Si on applique deux fois le théorème de Pythagore dans les triangles rectangles CED et AFD on obtient:

 $e^2 = a^2 - (d-h)^2$ pour CED et $e^2 = b^2 - h^2$ pour ADF (avec $d^2 = a^2 + b^2$)

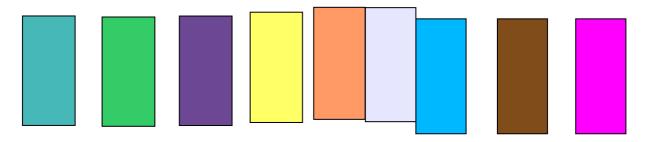

Ainsi on a:
$$a^2-(d-h)^2=b^2-h^2$$

 $a^2-d^2+2dh-h^2=b^2-h^2$
 $h=(b^2-a^2+d^2)/(2d)$
 $h=b^2/d$

Et on trouve e à partir de $e^2=b^2-h^2$

$$e = \sqrt{b^2 - \frac{b^4}{d^2}} = \sqrt{\frac{b^2 d^2 - b^4}{d^2}} = \sqrt{\frac{a^2 b^2}{d^2}} = \frac{ab}{\sqrt{a^2 + b^2}}$$

On remarque que la nouvelle formule de e_{min} est symétrique. Ce qui veut dire que les deux dominos suivants vont commencer à tomber en même temps.



En effet, comme les deux dominos sont identiques, ils commenceront à tomber lorsqu'ils auront la même position (debout).

Pour le domino couché , il faudra tout d'abord le relever avant de déclencher l'avalanche.

Pour le domino debout, il suffira de lui communiquer une légère impulsion.

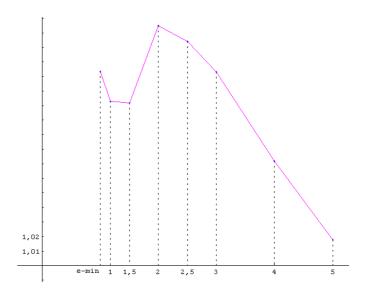
La symétrie de la formule est alors expliquée.


Ne pouvant trouver la solution par la théorie, nous avons tenté de la trouver par le biais d'expérimentations.

Première expérimentation: dominos de 1X7.5cm

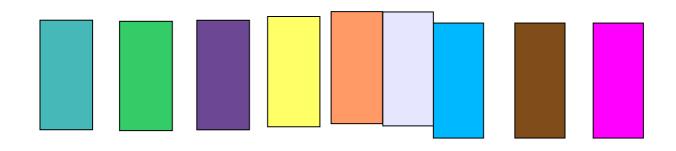
Protocole expérimental: Cette expérience a consisté à placer ces dominos sur une longueur de 1m avec le même écartement entre chaque domino. Nous avons calculé la vitesse de chute grâce au logiciel Généris et à une webcam (avec une marge d'erreur de 2x33ms correspondant à la sélection de la première image et la dernière). Nous avons

placé deux dominos au début avec le même écartement (5cm) pour avoir la même impulsion pour déclencher la chute tout au long des différentes expériences. L'expérience s'arrête lorsque l'avant dernier domino touche le dernier qui fait office de mur.


1 m

Ecartement	5	cm	4 cm		
	Temps en ms Vitesse en m/s		Temps en ms	Vitesse en m/s	
1er essai	983	1,017	933	1,072	
2ème essai	967	1,035	933	1,072	
3ème essai	1000	1,001			
Moyenne	983	1,017	933	1,072	

Ecartement	3	cm	2,5 cm		
	Temps en ms Vitesse en m/s		Temps en ms	Vitesse en m/s	
1er essai	883	1,133	867	1,154	
2ème essai	883	1,133			
3ème essai	883	1,133			
Moyenne	883	1,133	867	1,154	


Ecartement	2	cm	1,5 cm		
	Temps en ms Vitesse en m/s		Temps en ms	Vitesse en m/s	
1er essai	844	1,185	899	1,112	
2ème essai	866	1,155	899	1,112	
3ème essai	866	1,155			
Moyenne	859	1,165	899	1,112	

ſ	Ecartement	1	cm	Emin		
		Temps en ms	Vitesse en m/s	Temps en ms	Vitesse en m/s	
ľ	1er essai	899	1,112	866	1,155	
	2ème essai	866	1,155	899	1,112	
	3ème essai					
I	Moyenne	883	1,134	883	1,134	

Malgré de nombreuses mesures (monter une expérience est assez long), nous avons une grosse déformation pour 1 cm et 1,5 cm.

Nous avons souhaité réaliser l'expérience avec de plus gros dominos pour réduire l'imprécision de la lecture des mesures.

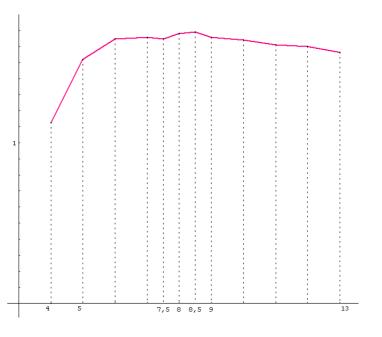
Deuxième expérimentation: cassettes de 2.5X19cm

Protocole expérimental: Cette expérience a consisté à placer ces cassettes sur une longueur de x m avec le même écartement entre chaque cassette. Nous avons calculé la vitesse de chute grâce au même matériel que l'expérimentation précédente.

Ecartement	4 cm			5 cm		
	Longueur (cm)	Temps (ms)	Vitesse (m/s)	Longueur (cm)	Temps (ms)	Vitesse (m/s)
1er essai	146,0	1166	1,252	167,0	1099	1,520
2ème essai	144,5	999	1,001			
Moyenne	145,3	1083	1,127	167,0	1099	1,520

Ecartement		6 cm			7 cm	
	Longueur (cm)	Temps (ms)	Vitesse (m/s)	Longueur (cm)	Temps (ms)	Vitesse (m/s)
1er essai	192,0	1166	1,647	215,0	1266	1,698
2ème essai				215,0	1333	1,613
Moyenne	192,0	1166	1,647	215,0	1299,5	1,656

Ecartement		7,5 cm			8 cm	
	Longueur (cm)	Temps (ms)	Vitesse (m/s)	Longueur (cm)	Temps (ms)	Vitesse (m/s)
1er essai	225,0	1366	1,647	215,0	1233	1,744
2ème essai				216,0	1233	1,752
Moyenne	225,0	1366	1,647	215,5	1233	1,748


Ecartement	8,5 cm			9 cm		
	Longueur (cm)	Temps (ms)	Vitesse (m/s)	Longueur (cm)	Temps (ms)	Vitesse (m/s)
1er essai	247,0	1499	1,648	256,0	1566	1,635
2ème essai	249,0	1433	1,738	257,0	1533	1,676
Moyenne	248,0	1466	1,693	256,5	1550	1,656

Ecartement	:	10 cm			11 cm		
	Longueur (cm)	Temps (ms)	Vitesse (m/s)	Longueur (cm)	Temps (ms)	Vitesse (m/s)	
1er essai	278,5	1699	1,639	300,0	1866	1,608	

On remarque qu'il y a bien un maximum, pour 8,5 cm dans notre cas.

Questions ouvertes:

Comment modéliser le problème pour pouvoir le traiter mathématiquement?
Y-a-t-il vraiment un écartement optimal? Quels sont les paramètres qui rentrent vraiment en compte?

