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1 The subject

The aim of the article is to study the angles that the clock hands form.
We will describe which angle the two clock hands form in a determined hour during the

day and then we will analyze some particular situation.
Then, starting from the clock problem, we will study the planetary motion, we will find

out the angular position and the time at which it would be more advantageous to launch a
spaceship from one planet to reach another one with the shortest possible distance.

Finally, we propose the results of two simulations concerning the Solar System using Unity.

2 Introduction

Our research was born from the study of the angles that the clock hands form.
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We asked ourselves which angle the two clock hands form in a determined hour during
the day and then we analyzed some particular situation.

Finally we thought a clock as a model to study the planetary motion, starting form the
clock problem we focused on the angular position and the time at which it would be more
advantageous to launch a spaceship from one planet (i.e. the Earth) to reach another one
(i.e. Mars) with the shortest possible distance. Another problem that we treated was the one
regarding the trajectory of the midpoint between Mars and the Earth.

In the last section we created two simulations concerning the Solar System using Unit.

3 Angles between the clock hands

Let’s calculate the clock hands’ angular speed :

ωH = 2π

720min
= π

360
rad/min for the hours clock hand

ωM = 2π

60min
= π

30
rad/min for the minutes clock hand

ωS = 2π

1min
= 2π rad/min for the seconds clock hand

Let’s now look for the functions which express the angle variation over time between two
clock hands. To do this we searched the meeting times of each couple of clock hands. Star-
ting from an overlaped situation we observed that the clock hands don’t match during the
first revolution of the fastest one. For instance in the case of minutes and hours hands we
wrote the two equations of motion, when the fastest hand had already done a turn. We sol-
ved the system of the two equations :

ΘH (t ) = π

6
+ωH t

ΘM (t ) =ωM t
=⇒ π

6
+ωH t =ωM t ⇒ t = 60

11
min

The time that pass between a meeting and the other is one hour and
60

11
min, i.e.

60min+ 60

11
min = 720

11
min

Given any instant we divide it by the meeting time and we take the floor of the result : this
gives us the number of overlaps already happend.
In order to obtain an angle between 0 rad and 2πrad we subtract 2π for each overlap. The
function that we were looking for is :

ΘM−H (t ) = 11

360
πt −2π

⌊
11

720
t

⌋
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We can rewrite the equation above, with t measured in minutes :

ΘM−H (t ) = 2π

(
11

720
t −

⌊
11

720
t

⌋)
= 2π

{
11

720
t

}
(1)

This is a periodic function with period T = 720

11
min

This is the graph of the function during half a day i.e. 720min. The angle calculated by the
fuction is the one betweeen the minute and hour hand therefore it can be a reflex angle.
In a similar way we get :

ΘS−M (t ) = 2π

{
59

60
t

}
(2)

ΘS−H (t ) = 2π

{
719

720
t

}
(3)

And finally the equations of the functions which indicate the angle between the hour/minu-
te/second hands and the initial vertical position are

ΘS(t ) = 2π {t } (4)

ΘM (t ) = 2π

{
1

60
t

}
(5)

ΘH (t ) = 2π

{
1

720
t

}
(6)

4 Overlapping times of two clock hands

In order to find when and where two clock hands meet (for example the minutes and
hours hand) we have to solve the follow equation :

ΘH (t ) =ΘM (t ) ⇐⇒
{

1

720
t

}
=

{
1

60
t

}
(7)
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If we call t = 720x we get the easier equation

{x} = {12x}

We can seek the solutions in the interval [0;1[ because of the periodicity of the fractional part
function. We divide the interval [0;1[ in 12 parts :

— if 0 ≤ x < 1

12
the equation becomes x = 12x and so x = 0

— if
1

12
≤ x < 2

12
the equation becomes x = 12x −1 and so x = 1

11

— if
2

12
≤ x < 3

12
the equation becomes x = 12x −2 and so x = 2

11— ...

— if
11

12
≤ x < 12

12
the equation becomes x = 12x −11 and so x = 11

11
(not in [0;1[).

Hence there are 11 solutions in [0;1[, i.e. the solution set is Sx =
{

k

11
, with k ∈N | k = 0, ...,10

}
Therefore the solution set of the eqaution 7 is St =

{
720

11
k | 06 k 6 10

}
This means that the 2 clock hands meet 11 times a day.
We call these times overlapping times t M−H

k .
In the same way it’s possible to find out the overlapping times of the hours and seconds
hands and the minutes and seconds hands.

5 Overlapping times of the three clock hands

In order to find when and where the three hands meet we have to solve the following
system : {

ΘH (t ) =ΘM (t )

ΘH (t ) =ΘS(t )
(8)

that is the system 
{

1

720
t

}
=

{
1

60
t

}
{

1

720
t

}
= {t }

If we call t = 720x we get the easier system{
{x} = {12x}

{x} = {720x}
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We have already solved the first equation in the previous section and we found in [0;1[ the

solution set S1 =
{

k

11
| k = 0, ...,10

}
. In the same way the solutions of the second equation in

[0;1[ are 719 and the solution set is S2 =
{
λ

719
|λ= 0, ...,718

}
.

The numbers 11 and 719 are coprime so
k

11
= λ

719
only for k =λ= 0 then the system has the

only solution x = 0. Therefore the only solution of the system 8 is t = 0.
In conclusion we can say that the three hands clock meet just at 12 o’clock.

6 Right angle

In order to find out when two clock hands form a right angle, we set the equation that the

describe the angle between two clock hands equal to
π

2
and

3π

2
(the conjugate angle of the

right angle). Let’s analize the case with the hours and minutes hands :

ΘM−H (t ) = π

2
∨ ΘM−H (t ) = 3π

2

Let’s now solve the two equations :

2π

{
11

720
t

}
= π

2
∨ 2π

{
11

720
t

}
= 3π

2

Which are : {
11

720
t

}
= 1

4
∨

{
11

720
t

}
= 3

4

Let’s start with the first one, which means that
11

720
t must be

1

4
plus a natural number n :

11

720
t = 1

4
+n ⇒ t = 180

11
+ 720

11
n

As defined 06 t < 720 (t minutes in half a day) ⇒ 06
180

11
+ 720

11
n < 720 that is :


180

11
+ 720

11
n > 0 ⇒ n >−18

72

180

11
+ 720

11
n < 720 ⇒ n < 43

4

=⇒ 06 n 6 10
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The solution set of the first equation is

S π
2
=

{
180

11
+ 720

11
n,n ∈N∧n 6 10

}
Following the same path for the second equation we obtain

S 3π
2
=

{
540

11
+ 720

11
n,n ∈N∧n 6 10

}
So the solution set is the union of the two previous sets, i.e. the set

S =
{

180

11
+ 360

11
n, n ∈N n 6 21

}

7 Geometrycal figures

7.1 Isosceles triangle

In order to discover when the triangle formed by two clock hands and the segment that
connect the two end-points not in common is isosceles, we split the problem in two cases :
the first one when the base of the triangle is the hours hand (h) and the two legs of the tri-
angle are the minutes hand (m) and the segment, the second one when the base of the tri-
angle is the minutes hand (m) and the hours hand (h) and the segment are the two legs of
the triangle (we consider h < m).

In the first case the angles opposite to the legs are ΘM−H (t ) = arccos

(
h

2m

)
or its conjugate

while in the second case the angles areΘM−H (t ) = arccos
( m

2h

)
or its conjugate. For instance,

if
h

m
= 2

3
than the angle becomesΘM−H (t ) = arccos

(
3

4

)
∨ΘM−H (t ) = arccos

(
1

3

)
.

As we find before the angle between the two clock hands as a function of time is :

ΘM−H (t ) = 2π

{
11

720
t

}
So, we can write :

2π

{
11

720
t

}
= arccos

(
h

2m

)
∨ 2π

{
11

720
t

}
= arccos

( m

2h

)

t =

arccos

(
h

2m

)
2π

+n

 720

11
∨ t =

arccos
( m

2h

)
2π

+n

 720

11
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Since t is defined for values among 0 and 720, we have :

0 <

arccos

(
h

2m

)
2π

+n

 720

11
< 720∨0 <

arccos
( m

2h

)
2π

+n

 720

11
< 720

n ≤ 10

7.2 Rectangle

In order to find out when the hours and minutes hands act like two sides, and the seconds
hand acts like the diagonal of this hypotetical rectangle we have to impose few conditions.

First of all the angle between minute and hour’s hand must be ΘM−H (t ) =
(π

2

)
∨ΘM−H (t ) =(

3π

2

)
We already find the solutions for this case, that are :

S =
{

t ∈R∧n ∈N | t = 180

11
+ 720

11
n ∨ t = 540

11
+ 720

11
n ∧n 6 10

}
As was said before the second hand is the diagonal and for that to happen we have to

impose this condition :

s2 = m2 +h2

We also have to impose :

s sin(ΘM−S) = h ∨ s sin(ΘH−S) = m

ΘM−S = arcsin

(
h

s

)
∨ ΘM−S = arcsin

(m

s

)

So, knowing that :

ΘM−S = 2π

{
59

60
t

}
We have that :

arcsin

(
h

s

)
= 2π

{
59

60
t

}
∨ arcsin

(m

s

)
= 2π

{
719

720
t

}
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S =

t ∈R∧n ∈N | t =
30arcsin

(
h

s

)
2π

+ 60

59
n ∨ t =

30arcsin
(m

s

)
2π

+ 60

59
n ∧ n 6 10


Then, we can find a value of

h

s
or a value of

m

s
that make possible to find a value of t such

that the rectangle could exist.

7.3 Parallelogram

We have three types of parallelograms that could be formed by the clock hands :

1 The sides are the hand of the minute and the seconds one, and one of the two diago-
nals is the hours hand.

2 The sides are the hand of the minute and the hours one, and one of the two diagonals
is the seconds hand.

3 The sides are the hand of the seconds and the hours one, and one of the two diagonals
is the minutes hand.

Before analizing every case let it be known that s > m > h .

Let’s study the first case, where the diagonal is the hours hand :

s2 = m2 +h2 −2mh cos(π−θM−H )

θM−H = 2π

{
11

720
t

} ⇒


θM−H = arccos

(
s2 −m2 −h2

2mh

)
θM−H = 2π

{
11

720
t

}
so

2π

{
11

720
t

}
= arccos

(
s2 −m2 −h2

2mh

)
then

t =
360arccos

(
s2 −m2 −h2

2mh

)
11π

+ 720

11
n ∧ n ≤ 10

For example, if
s2 −m2 −h2

2mh
=−1

2
.

We have that :

2π

{
11

720
t

}
= 2

3
π ⇒ 11

720
t = 1

3
+n ⇒ t = 240

11
+ 720

11
n
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In the second case we have :

h2 = s2 +m2 +2ms cos(θS−M )

ΘS−M (t ) = 2π

{
59

60
t

} ⇒


θS−M = arccos

(
h2 − s2 −m2

2sm

)
ΘS−M (t ) = 2π

{
59

60
t

}
so

2π

{
59

60
t

}
= arccos

(
h2 − s2 −m2

2sm

)
then

t =
30arccos

(
h2 − s2 −m2

2sm

)
59π

+ 60

59
n ∧ n ≤ 10

In the third case we have :m2 = s2 +h2 +2sh cos(θS−H )

ΘS−H (t ) = 2π

{
719

720
t

} ⇒


θS−H = arccos

(
m2 +−s2 −h2

2sh

)
ΘS−H (t ) = 2π

{
719

720
t

}
so

2π

{
719

720
t

}
= arccos

(
m2 +−s2 −h2

2sh

)
then

t =
360arccos

(
m2 +−s2 −h2

2sh

)
719π

+ 720

719
n ∧ n ≤ 10

7.4 Symmetries

Definition 1. Given an angleαwith 0 ≤α<π, rα is the ray with origin in the clock center that
forms an angleαwith respect to the vertical line. Symmetrycal time tαk related to rα is defined
as the time in which the ray rα or its opposite is the bisector of the angle between the hours
and minutes clock hands.

Definition 2. Symmetry axis aα is defined as the straight line to which the ray rα belongs.
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7.5 Symmetry axis given a time

Given an hour, in order to find the symmetry axis between the two clock hands we have
to calculate its inclination angle α that is the mean-value of the hands angles.

α= ΘH +ΘM

2

For each time there is only one symmetry axis.

7.6 Symmetrycal times given an axis

Given an aα, we want to find the symmetrycal times tαk .

Theorem 1. Given a symmetry axis aα, there are 13 different symmmetrycal time tαk , with k
integer, 0 ≤ k ≤ 12

Démonstration. At the beginning we have to observe that there are 2 different situations : In
the first caseΘH +ΘM = 2α and in the second caseΘH +ΘM = 2α+2π
As shown in the graphs below.

Therefore we have to solve the two equation :

2π

{
1

720
t

}
+2π

{
1

60
t

}
= 2α ∨ 2π

{
1

720
t

}
+2π

{
1

60
t

}
= 2α+2π

π

{
1

720
t

}
+π

{
1

60
t

}
=α

We divide the interval [0;720[ in 12 parts :

MATh.en.JEANS 2020-2021 Liceo Scientifico M. Casagrande, Pieve di Soligo, Treviso, Italy
Page 10



— if 06 t < 60, then :
13

720
t = α

π
⇒ t = 720

13

(α
π

)
which is acceptable if 06α<π

— if 606 t < 120, then :
13

720
t = α

π
+1 ⇒ t = 720

13

(α
π
+1

)
which is acceptable if

1

12
π6α<

π

— ...

— if 660 6 t < 720, then :
13

720
t = α+11 ⇒ t = 720

13

(α
π
+11

)
which is acceptable if

11

12
6

α<π
Therefore :
— if 06α< π

12
there is 1 solution

— if
π

12
6α< 2

12
π there are 2 solutions

— ...

— if
11

12
π6α<π there are 12 solutions

Hence there are from 1 to 12 solutions depends on α.

Here is the graph of the function y =π
{

1

720
x

}
+π

{
1

60
x

}
which has to be intersected by the

graph of the function y =α with 06α<π.

The second equation is π

{
1

720
t

}
+π

{
1

60
t

}
=α+πwe divide the interval [0,720[ in 12 parts :

— if 06α< 60 then t = 720

13

(α
π
+1

)
which is acceptable if 06α< 1

12
π

— if 606α< 120 then t = 720

13

(α
π
+2

)
which is acceptable if 06α< 2

12
π

— ...

— if 6606α< 720 then t = 720

13

(α
π
+12

)
which is acceptable if 06α<π
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Therefore :

— if 06α< 1

12
π there are 12 solutions

— if
1

12
π6α< 2

12
π there are 11 solutions

— ...

— if
11

12
π6α<π there is 1 solution

Here are the graphs of the functions y =π
{

1

720
x

}
+π

{
1

60
x

}
and y =π

{
1

720
x

}
+π

{
1

60
x

}
−π

that have to be intersected by the graph of the function y =α with 06α<π.

Hence ∀α | 0 6 α< π there are 13 solutions of ΘH +ΘM = 2α ∨ ΘH +ΘM = 2α+2π then
there are 13 different symmetrycal times :

tαk = 720

13

(α
π
+k

)
with k ∈N k 6 12

Theorem 2. Let’s define ηαk = ΘH (tαk ) and µαk = ΘM (tαk ), given an axis aα, given h and m the
lenghts of the hours and minutes clock hands, the points Aα

k (h sin(ηαk );h cos(ηαk )) are the ver-

tices of a regular tridecagon inscribed in the circumenference of radius h with side 2h sin
( π

13

)
.
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The points Bα
k (m sinµαk );m cos(µαk )) are the vertices of a regular tridecagon inscribed in the

circumenference of radius m with side 2m sin
( π

13

)
.

Démonstration. Given two symmetrycal times tαk and tαk−1 let’s calculate the difference bet-
ween ηαk and ηαk−1

ηαk −ηαk−1 = 2π

{
1

720
tαk

}
−2π

{
1

720
tαk−1

}
=

2π

{
1

720
· 720

13

(α
π
+k

)}
−2π

{
1

720
· 720

13

(α
π
+k −1

)}
=

2π

{
α

13π
+ k

13

}
−2π

{
α

13π
+ k

13
− 1

13

}
=

2π

(
α

13π
+ k

13
−

⌊
α

13π
+ k

13

⌋
− α

13π
− k

13
+ 1

13
+

⌊
α

13π
+ k

13
− 1

13

⌋)
=

2π

(⌊
α

13π
+ k

13
− 1

13

⌋
−

⌊
α

13π
+ k

13

⌋
+ 1

13

)

Because of 06α<π ∧ 06 k 6 12,

06
α

13π
+ k

13
< 1 ∧ − 1

13
6

α

13π
+ k

13
− 1

13
< 1

so⌊
α

13π
+ k

13

⌋
= 0 ∧

⌊
α

13π
+ k

13
− 1

13

⌋
= 0

Then the difference above becomes :

ηαk −ηαk−1 = 2π

(
1

13

)
= 2

13
π

This means that the 13 symmetrycal times divide the hours circumnference in 13 equal parts.
Consequently Aα

k is after Aα
k−1 in chronological order. For symmetry Bα

k is before Bα
k−1 then

let’s now calculate the difference between µαk−1 and µαk ,

µαk−1 −µαk = 2π

{
12

13π
α+ 12

13
k − 12

13

}
−2π

{
12

13π
α+ 12

13
k

}
=

2π

(⌊
12

13π
α+ 12

13
k

⌋
−

⌊
12

13π
α+ 12

13
k − 12

13

⌋
− 12

13

)
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Because the two arguments of the two floors differ of −12

13
, the difference can be 0 or 1. So

the difference above becomes :

2π

(
−12

13

)
=−24

13
π ∨ 2π

(
1

13

)
= 2

13
π

Because of Bα
k−1 is after Bα

k the differenceµαk−1−µαk can’t be negative so−24

13
π is not accetable.

This means that the 13 symmetrycal times divide the minutes circumnference in 13 equal
parts.

In order to calculate the two side we use the chord theorem. So the chord, for the hour cir-

cumnference, is 2h sin
( π

13

)
and for the minutes circumnference is 2m sin

( π
13

)
.

Theorem 3. The rotation angle δ between the two polygons is min

{
γ,

2

13
π−γ

}
with γ the

angle between the first point Aα
k after rα and the first point Bk before rα.
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Démonstration. The first point Aα
k clockwise starting from the vertical line is Aα

0 , so the angle

ηα0 = 2

13
α.

Let p =
⌊(
α− 2

13α

2
13π

)⌋
=

⌊
11α

2π

⌋
, the point Ap+1 is the first point after rα and Bp+1 is the

first point before rα, γ= ηαp+1 −µαp+1 then δ= min

{
γ,

2

13
π−γ

}
.

Corollary 1. If one of the 13 different symmetrycal times is an overlapping time t M−H
k then the

rotation angle δ= 0.

Démonstration. In this case ηαp+1 =µαp+1 so γ= 0 and then δ= 0.

Notice that a time corresponds to a single axis meanwhile an axis corresponds to thir-
teen hours. This is the same relation between the 13th power of a complex number and the
thirteen roots of a complex number.

8 Hours and complex numbers

Theorem 4. Given a symmetry axis aα the points Aα
k in the hours circumnference are the 13

points in the circumneference of radius h in the Argand-Gauss plane which rapresent the thir-

teen complex roots of the complex number z with arg(z) = 13

2
π− 2α− 2qπ, q =

⌊
13

4
− α

π

⌋
,

|z| = h13 and Bα
k are the 13 complex roots of the complex number w with arg(w) = arg(z)+13δ,

|w | = m13.

Démonstration. In order to find the last Aα
k before the abscissa axis let’s caluclate

q =
⌊
π
2 − 2

13α

2
13π

⌋
=

⌊
13

4
− α

π

⌋
then Aα

q is the last point before the abscissa axis.

If we consider the 13 roots of a number z ∈C and we call z0 the first root then arg(z0) = arg(z)

13
.

To find arg(z) of the complex number z whose roots form the same tridecagon formed by the
13 Aα

k let’s equal the angles of z0 and Aα
q :

tαq = 720

13

(α
π
+q

)
⇒ ΘH (tαq ) = 2

13
α+ 2

13
qπ

2

13
α+ 2

13
qπ= π

2
− arg(z)

13
⇒ arg(z) = 13

2
π−2α−2qπ
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The first root w0 of the complex number w has an angle
arg(w)

13
and it has to be the angle of

z0 plus the rotation angle δ in order to be a vertice of the minutes tridecagon.

arg(w)

13
= arg(z)

13
+δ⇒ arg(w) = arg(z)+13δ

The complex roots belong to a circumnference of radius 13
p

z (the real square) so h = 13
p

z
then |z| = h13 and in the same way |w | = m13.

9 Examples

We are now going to analyze how it’s possible to connect a given symmetry axis aα with
2 complex numbers

Example 1 For α= π

3
:

The 13 symmetrycal time are t
π
3

k = 720

13

(
1

3
+k

)
with 06 k 6 12

And we have drown them in the graph below :
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Thanks to the theorem 4 we calculate : q =
⌊

13

4
− 1

3

⌋
= 2 and arg(z) = 13

2
π− 2

3
π−4π = 11

6
π

Thanks to theorem 3 let’s calculate p =

ÌÌÌÌÊ11 · π
3

2π

ÍÍÍÍË= 1

γ= η
π
3
2 −µ

π
3
2 = 2π

{
1

13

(
1

3
+2

)}
−2π

{
12

13

(
1

3
+2

)}
= 14

39
π− 4

13
π= 2

39
π

δ= min

(
γ;

2

13
π−γ

)
= min

(
2

39
π;

4

39
π

)
= 2

39
π

arg(w) = 11

6
π+ 2

3
π= 5

2
π
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10 The interplanetary voyage

Starting from the clock problem, we want to determine the angular position and the time
at which it would be more advantageous to launch a spaceship from one planet (i.e. the
Earth) to reach another (i.e. Mars) with the shortest possible distance. In the approximation
of a circular orbit it is evident that the shortest path is radial. However, it must be considered
that the target planet will move during the time of the journey ; consequently the trip must
be anticipated by the time necessary to cover this distance as illustrated below.
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11 Spaceship in uniform motion

At first we dealt with this problem by assuming that the motion of the spaceship was
uniform, thus neglecting the initial period of acceleration. The problem was treated in polar
coordinates by writing the equations of motion in parametric form as a function of time, that
is the distance r (t ) and the angle θ(t ) with respect to the centre of the Sun. These equations
were written separately for the spaceship that departed from Earth{

r (t ) = R⊕+ v t

θ(t ) = 0

and for the planet Mars : {
r (t ) = RM

θ(t ) = θ0 +ωM t

In the equations above v is the constant speed of the spaceship, R⊕ the mean radius of the
Earth’s orbit, RM the mean radius of the Martian orbit, θ0 the angle of advance of Mars with
respect to the Earth andωM the angular velocity of Mars. The travel time and the angle of ad-
vance can now be obtained by equating member to member the previous systems of equa-
tions, from which it follows {

R⊕+ v t = RM

0 = θ0 +ωM t

So we obtain 
t = RM −R⊕

v

θ0 = R⊕−RM

v
ωM

Earth Mars
Orbital circle C (km) 924375700 1429000000
Orbital circle C (au) 6,179 9,552

Orbital radius R(km) 147118962 227432414
Orbital radius R(au) 0,9834 1,52
Orbital period T(d) 365,26 686,96

Angular speedω(rad/d) 1,72 ·10−2 9,14 ·10−3

TABLE 1 – Some orbital data for the Earth and Mars.

Considering the orbital for the Earth and Mars, summarized in table 1, and a speed of 1.1 ·
104m/s (comparable with the escape velocity from the planet Earth and compatible with
those currently reachable by existing space vectors), it yelds a travel time

t = RM −R⊕
v

' 84d
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and a lead angle

θ0 = R⊕−RM

v
ωM ' 0,765r ad ' 44◦

12 Escape velocity and acceleration

In the following it was considered the need to include an initial period of acceleration in
the motion of the spaceship. Rather than dealing with the departure of the spaceship directly
from the ground, we hypothesized that the same was previously placed in a stable orbit and
subsequently launched at the appropriate time in the established direction.

In order to obtain a realistic estimate of the acceleration time needed, we determined that
it was enough for the spaceship to reach the escape velocity from planet Earth. The latter is
defined as the speed that a body must have to escape the gravitational field of a planet, that
is, the speed it should have at the time of departure to reach an infinite distance from it
(where its potential energy tends to zero) with a speed that is canceled asymptotically.

Considering the kinetic and potential energies of the spaceship at the time of departure,
one obtains a total mechanical energy

Emi = Eki +Ug i = 1

2
mv2

i −
GmM⊕
R⊕+hi

where M⊕ and R⊕ point respectively out to the mass and the radius of the Earth, and G is the
gravitational constant.

Requiring that both cancel when the spaceship is finally out of the influence of the Earth’s
gravitational field

Em f = Ek f +Ug f = 0+0

by means of the conservation of mechanical energy we obtain that

1

2
mv2

i −
GM⊕m

R⊕+hi
= 0 ⇒ vi =

√
2GM⊕
R⊕+hi

Using the values in the following table

G

(
N m2

kg 2

)
M⊕(kg ) R⊕(m)

6,67 ·10−11 5,9726 ·1024 6,372797 ·106

and an initial height hi = 400km = 4 · 105 m, compatible with the average flight altitude of
the International Space Station, one obtains

vi =
√

2GM⊕
R⊕+hi

' 10846m/s
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which is in good agreement with the value previously used for the uniform motion.
In order for the orbit of the spaceship at the reference altitude to be stable, its initial speed

must respect the equation of gravitational equilibrium, i.e. the corresponding centrifugal
force must be equal and opposite to the gravitational attraction force :

mv2
0

R⊕+hi
= GmM⊕

(R⊕+hi )2 ⇒ v0 =
√

GM⊕
R⊕+hi

= 7669,4m/s

Assuming that the departure of the spacecraft occurs when it, in its orbital motion around
the Earth, is directed towards Mars, and neglecting the radius R⊕+hi of its orbit with respect
to the distance between the two planets, the launch can be considered radial as assumed in
section 10.

Considering a spaceship capable of maintaining a constant acceleration of about 3g
(which is compatible with those currently reachable by existing space vectors), the time ne-
cessary to reach the required escape velocity is

tacc = vi − v0

3g
' 108 s

that is lesser than 2 minutes, and obviously negligible compared to the 84 days estimated
for the journey. This justifies the fact that the motion of the spaceship can be considered
uniform for the entire duration of the journey.

13 Equations of motion and angle between planets

Let us now try to obtain the hourly law which expresses the dependence on the time of
the angle formed by the vector rays that identify the two planets with respect to the Sun.

Following the approach seen in section 2, starting from an instant t0 in which the two
planets are aligned with the Sun, we first want to find the angle traveled by the slowest of the
two (Mars in our example) when the other one has already traveled a complete orbit. This
initial phase is given by

ϕ= 2π
ωM

ω⊕
= 2π

T⊕
TM

= 3,34r ad

having used the orbital periods of the planets shown in table 1. The time at which the next
alignment of the planets will take place, measured from the moment when the fastest one
(the Earth in our example) has already completed a revolution, will be obtained by equating
the angles traveled

ϕ+ωM t1 =ω⊕t1

from which it results :

t1 = ϕ

ω⊕−ωM
= 2π

T⊕/TM

2π

T⊕
− 2π

TM

= 2π

2π

T⊕/TM

TM −T⊕
T⊕TM

= T⊕
TM

T⊕TM

TM −T⊕
= T 2⊕

TM −T⊕
= 414,12d
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The total time T1 elapsed since the previous alignment will then be obtained by adding the
period of the fastest planet to this

T1 = t1 +T⊕ = T 2⊕+TM T⊕−T 2⊕
TM −T⊕

= TM T⊕
TM −T⊕

=
(

1

T⊕
− 1

TM

)−1

= 779,38d ' 780d

The angleΘ between the planets will be covered with an angular velocity Ω such that

Θ(t ) =Ω t

which must return a round angle after the time T1. The resultingΩ is therefore given by :

Ω= 2π

T1
= 8,06 ·10−3 r ad

d
' 8

1000

r ad

d

The angle θ we want to obtain in the end must be included in the [0;2π] range, that is the
number N of round angles already covered must be subtracted from Θ. This last quantity
can be expressed as a function of time as the whole part of the t/T1 ratio :

N =
⌊

t

T1

⌋
In conclusion the sought hourly law can be written as

θ(t ) =Θ(t )−2Nπ=Ω t −2π

⌊
t

T1

⌋
' 8

1000

r ad

d
· t −2π

⌊
t

780d

⌋

14 Distance between planets

Another problem we faced was that of determining the distance between the two planets
as a function of the angle θ(t ). Let us consider the triangle SE M shown in the figure. It will
have sides R⊕, RM and d , where d is the Earth-Mars distance.
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In the frame of reference in which the Earth is stationary with respect to the Sun the angle
between the planets is just θ(t ). By Carnot’s theorem it follows that :

d =
√

R2⊕+R2
M −2R⊕RM cosθ(t )

The distance between the two planets thus obtained is represented below in astronomical
units as a function of time measured in days.

As it is evident, the Earth-Mars distance goes between a minimum of ' 0,5 a.u. when the two
planets are aligned on the same side of the Sun, and a maximum of ' 2,5 a.u. when instead
they are on opposite sides.

15 Trajectory of the midpoint

A more complex problem related to the previous one may be that of determining the
trajectory of the Earth-Mars midpoint. The instantaneous position of the midpoint could be
obtained in Cartesian coordinates as the average of those of the two planets.

x(t ) = x⊕+xM

2
= R⊕ cosθ⊕+RM cosθM

2
= R⊕ cos(ω⊕t )+RM cos(ωM t )

2

y(t ) = y⊕+ yM

2
= R⊕ sinθ⊕+RM sinθM

2
= R⊕ sin(ω⊕t )+RM sin(ωM t )

2

On the other hand, this approach would not have an obvious link with the original pro-
blem. Therefore we preferred to determine the position of the midpoint in polar coordinates
(r (t );α(t )) in the reference system in which the Earth is stationary with respect to the Sun.
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In this frame of reference the Sun is placed on the origin and the Earth in the position (1 a.u.; 0)
while Mars orbits on a circle of radius RM ' 1,5 a.u. The angle θ(t ) must also be considered
negative since the angular velocity of Mars is less than that of the Earth. The midpoint will
be given by the intersection between the diagonals of the parallelogram of sides SE and SM .
The distance r (t ) of the midpoint from the Sun is given by half of the diagonal SQ and can
be obtained again using Carnot’s theorem on the triangle SEQ.

r (t ) = SQ

2
=

√
R2⊕+R2

M −2R⊕RM cos(π−θ(t ))

2
=

√
R2⊕+R2

M +2R⊕RM cosθ(t )

2

To find the position of the midpoint in polar coordinates, it is also necessary to determine
the angle α(t ) formed by the segment between the Sun and the midpoint and the Sun-Earth
vector radius. Once again it is possible to use Carnot’s theorem on the triangle QSE

R2
M = R2

⊕+SQ
2 −2R⊕SQ cosα(t )

which gives

cosα(t ) = R2⊕−R2
M +SQ

2

2R⊕SQ
= R2⊕−R2

M +4r 2(t )

4R⊕r (t )
= R⊕+RM cosθ(t )√

R2⊕+R2
M +2R⊕RM cosθ(t )

The Cartesian coordinates x(t ) and y(t ) of the midpoint will be given by{
x(t ) = r (t )cosα(t )

y(t ) = r (t )sinα(t )
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Consequently, it will be necessary to express sinα(t ) as a function of the cosine of the angle.
Using the fundamental identity of goniometry, we obtain

sinα(t ) =±
√

1−cos2α(t ) =±
√√√√1− R2⊕+R2

M cos2θ(t )+2R⊕RM cosθ(t )

R2⊕+R2
M +2R⊕RM cosθ(t )

=

=±
√√√√ R2

M (1−cos2θ(t ))

R2⊕+R2
M +2R⊕RM cosθ(t )

=± RM sinθ(t )√
R2⊕+R2

M +2R⊕RM cosθ(t )

It makes no sense to consider negative roots as the sine of α(t ) is definitely positive as long
as the angle between SE and SP is between 0 and π. But this is always the case since the
midpoint P is inside the convex angle ESM . In this way the Cartesian coordinates result :

x(t ) = r (t )cosα(t ) = R⊕+RM cosθ(t )

2

y(t ) = r (t )sinα(t ) = RM sinθ(t )

2

(9)

The corresponding Cartesian equation can be easily obtained as it follows :
x(t ) = r (t )cosα(t ) = R⊕+RM cosθ(t )

2

y(t ) = r (t )sinα(t ) = RM sinθ(t )

2

⇒
{

2x(t )−R⊕ = RM cosθ(t )

2y(t ) = RM sinθ(t )

{
4x2 −4R⊕x +R2

⊕ = R2
M cos2θ(t )

4y2 = R2
M sin2θ(t )

⇒ 4x2 +4y2 −4R⊕x = R2
M −R2

⊕

This is obviously the equation of a circle, which can be written as

x2 −R⊕x + 1

4
R2
⊕+ y2 = R2

M −R2⊕
4

+ 1

4
R2
⊕ ⇒

(
x − 1

2
R⊕

)2

+ y2 = R2
M

4

In this form it is clear that the center of the circumference has coordinates CP

(
1

2
R⊕ ,0

)
and

its radius is equal to RP = 1

2
RM .

If we now also want to consider the rotation of the Earth, the new coordinates of the
midpoint will be obtained by adding the Earth’s rotation angle to α.{

x(t ) = r (t )cos(α(t )+ωT t )

y(t ) = r (t )sin(α(t )+ωT t )
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By expanding sine and cosine with the angle addition formulas and using the relations (9) it
follows that 

x(t ) = 1

2
(R⊕+RM cosθ(t ))cos(ωT t )− 1

2
RM sinθ(t )sin(ωT t )

y(t ) = 1

2
(R⊕+RM cosθ(t ))sin(ωT t )+ 1

2
RM sinθ(t )cos(ωT t )

These parametric equations produce the curve represented (in black) in the following figure,
together with the Earth’s orbit (in blue) and the Martian one (in red).

Furthermore, by expanding the term in parentheses, one obtains
x(t ) = 1

2
R⊕ cos(ωT t )+ 1

2
RM cosθ(t )cos(ωT t )− 1

2
RM sinθ(t )sin(ωT t )

y(t ) = 1

2
R⊕ sin(ωT t )+ 1

2
RM cosθ(t )sin(ωT t )+ 1

2
RM sinθ(t )cos(ωT t )

which can also be written as
x(t ) = 1

2
RM cos(θ(t )+ωT t )+ 1

2
R⊕ cos(ωT t )

y(t ) = 1

2
RM sin(θ(t )+ωT t )+ 1

2
R⊕ sin(ωT t )

Finally, by noticing that θ(t )+ωT t is the rotation angle of Mars ωM t it results
x(t ) = 1

2
RM cos(ωM t )+ 1

2
R⊕ cos(ωT t ) = RM cos(ωM t )+R⊕ cos(ωT t )

2

y(t ) = 1

2
RM sin(ωM t )+ 1

2
R⊕ sin(ωT t ) = RM sin(ωM t )+R⊕ sin(ωT t )

2
which is exactly the arithmetic mean between the positions of the Earth and Mars (15).
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16 The simulations

In this section we have created two simulations concerning the Solar System using Unity,
a widespread graphics software for creating animations, and also employing programming
parts in the C] language (C sharp). In the first simulation we have drawn the graph of the
midpoint of a segment which connects two planets orbiting around the Sun. In the second
one we have simulated, in a approximate way, an interplanetary voyage from Earth to ano-
ther planet of the Solar System.

16.1 First simulation : graph of the midpoint

The first aim is to plot the midpoint of an imaginary segment between two planets in the
Solar System. During the creation of this simulation we analyzed fours aspects : - Creation of
a 3D scaled model of the Solar System - Programming of the motion of the planets - Creation
of the segment and plotting of its midpoint - Programming of the various menus for the
selection and choice of the planets.

In developing these four sections we created many pieces of code, especially for the mo-
tion of the planets by configuring parameters such as the rotations and the revolution of the
planets. For the midpoint, instead, we used packages already present on Unity.

16.2 Second simulation : the interplanetary voyage

For the second simulation we started from the results obtained in the previous sections
concerning the interplanetary voyage. We decide to leave out the calculation of fuel consump-
tion of the spaceship or the long distances in order to simplify the analysis. We set ourselves
these goals :

- Graphics and 3D models
- Algorithms and programming
- Real aspects
Regarding the graphics and algorithms we reused parts of the previous simulation, such

as the planetary motion algorithms, modifying some image rendering factors in order to
make the simulation look more photorealistic. As regards the part of physics we focused on
the “gravitational slingshot”. It can be used to accelerate a spacecraft, that is, increase or de-
crease its speed or redirect its path. To create this section we therefore used the “IA” package
of Unity which allows the automatic movement of objects which we optimized by inserting
the orbits so that the spaceship could use them to recreate the gravitational slingshot and
reach the destination. For the development of these orbits we used parameters similar to the
real one (for example the orbit of Jupiter is far larger than that of the Earth)
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FIGURE 1 – Graph under development of the midpoint of a segment connecting Venus and
Mercury

FIGURE 2 – Representation of the orbit of Mercury
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FIGURE 3 – Second simulation image

We realized that this system of representation of physical phenomena is effective for the
understanding of theoretical concepts. However, we found many difficulties, in particular
with regard to the motion of the spaceship in the second simulation. We could have impro-
ved if we had had more time available, adding more parameters allowing us to create a model
as close as possible to the real one.

Note d’édition

[?] Cet article est difficile à comprendre pour des élèves de lycées français. Il est
du niveau de première année post bac.

MATh.en.JEANS 2020-2021 Liceo Scientifico M. Casagrande, Pieve di Soligo, Treviso, Italy
Page 29


	The subject
	Introduction
	Angles between the clock hands
	Overlapping times of two clock hands
	Overlapping times of the three clock hands
	Right angle
	Geometrycal figures
	Isosceles triangle
	Rectangle
	Parallelogram
	Symmetries
	Symmetry axis given a time
	Symmetrycal times given an axis

	Hours and complex numbers
	Examples
	The interplanetary voyage
	Spaceship in uniform motion
	Escape velocity and acceleration
	Equations of motion and angle between planets
	Distance between planets
	Trajectory of the midpoint
	The simulations
	First simulation: graph of the midpoint
	Second simulation: the interplanetary voyage


