Cet article est rédigé par des élèves. Il peut comporter des oublis ou des imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition.

Les additions pannumériques

2018-2019

Nom, prénom et niveaux des élèves : Lacluche Camille, Monard Julie et Ouffela–Ménecier Lyna, classe de 4ème

Établissement : Collège Henri de Montherlant, Neuilly-en-Thelle

Enseignant(s): Ide Morgan

Chercheur(s): Bonino marc, Université paris 13

1 Présentation du sujet

Sujet : On veut faire l'addition de deux nombres entiers à trois chiffres pour en obtenir un troisième de telle façon que tous les chiffres de 1 à 9 apparaissent dans cette addition. [1]

Exemple:

Les questions posées :

- Que peut-on remarquer concernant les chiffres du résultat de l'addition? Est-ce une coïncidence?
- Peut-on faire la liste de toutes les additions répondant à la question?

2 Annonces des conjectures et résultats obtenus

Il semble que la somme des chiffres du résultat soit toujours de 18. Exemples :

3 Texte de l'article

3.1 Pourquoi 18?

Propriété n°1 : Dans une addition pannumérique il y a exactement une retenue, et celleci vaut 1.

Nous allons étudier les retenues dans ce type d'opération. Pour prouver qu'il y a forcément une retenue, nous allons supposer qu'il n'y en a pas :

Notons a, b, c, d, e, f, g, h, i les 9 chiffres intervenant dans notre opération

$$\begin{array}{c}
a \ b \ c \\
+ d \ e \ f \\
\hline
g \ h \ i
\end{array}$$

Donc c + f = i, b + e = h et a + d = g,

La somme des chiffres de 1 à 9 est de 45 donc :

$$a+b+c+d+e+f+g+h+i=45$$

On fait apparaitre les regroupements ci-contre :

$$(a+d) + (b+e) + (c+f) + g + h + i = 45$$

 $g+h+i+g+h+i = 45$
 $2 \times (g+h+i) = 45$
 $g+h+i = 22,5$

$$\begin{array}{c}
a & b & c \\
+ & d & e & f \\
\hline
g & h & i
\end{array}$$

$$c + f = i$$

$$b + e = h$$
$$a + d = g$$

Or g,h et i sont des chiffres donc leur somme donnera un nombre entier. Donc l'hypothèse de départ est fausse, il y a forcement une retenue. [2]

Nous voulons montrer que la retenue a toujours une valeur de 1 :

La retenue ne sera pas supérieure à 1 car les plus grands chiffres que nous pouvons additionner sont 8 et 9 qui donneront 17, donc la retenue ne sera pas supérieure à 1, et comme nous

l'avons démontré précédemment, il y a forcement une retenue; ce sera 1.

Montrons qu'il n'y a qu'une seule retenue. Si il y a deux retenues, elles proviennent de la colonne des unités et de celle des dizaines. Faisons la démonstration avec la colonne des unités : [3]

$$a+b+c+d+e+f+g+h+i=45$$

On fait apparaitre les regroupements ci-contre :

$$(a+d)+(b+e)+(c+f)+g+h+i=45$$

$$(g-1)+(h-1+10)+(10+i)+g+h+i=45$$

$$g-1+h+9+10+i+g+h+i=45$$

$$2g+2h+2i+18=45$$

$$2g+2h+2i=27$$

$$2(g+h+i)=27$$

$$g+h+i=13,5$$

Notation 2:

$$a \ b \ c$$

 $+ \ d \ e \ f$
 $g \ h \ i$
 $c + f = 10 + i$
 $b + e = h - 1 + 10$
 $a + d = g - 1$

Or g,h et i sont des chiffres donc leur somme donnera un nombre entier. Donc l'hypothèse de départ est fausse, il ne peut y avoir deux retenues. En conclusion, il n'y a qu'une seule et unique retenue de 1.

Propriété n°2:

- La somme des chiffres du résultat d'une addition pannumérique est de 18.
- La somme des chiffres des termes d'une addition pannumérique est de 27.

Montrons que la somme du résultat est toujours 18. Si il y a une retenue, elle provient soit de la colonne des unités soit de celle des dizaines. Faisons la démonstration avec la colonne des unités :

$$a+b+c+d+e+f+g+h+i=45$$

On fait apparaitre les regroupements ci-contre :

$$(a+d) + (b+e) + (c+f) + g + h + i = 45$$

$$g + (h-1) + (10+i) + g + h + i = 45$$

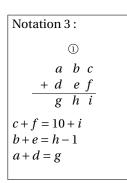
$$g + h - 1 + 10 + i + g + h + i = 45$$

$$2g + 2h + 2i + 9 = 45$$

$$2g + 2h + 2i = 36$$

$$2(g + h + i) = 36$$

$$g + h + i = 18$$



Nous avons donc démontré que lorsque la retenue est sur la colonne des dizaines, nous trouvons toujours 18 au résultat.

$$45 - 18 = 27$$

La somme des chiffres des deux termes est donc de 27.

La démonstration précédente donne les mêmes résultats si la retenue provient de la colonne des dizaines.

3.2 La liste des résultats

Nous avons cherché la liste de tous les triplets dont la somme donne 18 car, comme nous l'avons démontré, la somme des chiffres du résultat d'une addition pannumérique donne 18. Ensuite, nous avons recherché si il y avait des additions pannumériques pour chaque résultat. Dans le tableau suivant : les résultats noirs possèdent au moins une addition pannumérique possible et les rouges, eux, n'en possèdent pas.

378	981	972	459	864	765	639
387	918	927	495	846	756	693
873	819	792	549	648	675	369
837	891	729	594	684	657	396
783	189	279	945	468	567	963
738	198	297	954	486	576	936

Il y a 31 résultats possibles. [4]

3.3 Les permutations

Nous avons découvert que nous pouvons créer 3 additions pannumériques de plus à partir d'une seule en effectuant des permutations.

Dans la première addition, nous permutons les chiffres des centaines (le 3 et le 6) pour obtenir la deuxième addition. La troisième addition est obtenue en permutant les chiffres des dizaines (le 1 et le 5) de la première addition. enfin nous avons fait de même avec les chiffres des unités (le 8 et le 4) pour obtenir la quatrième addition.

Il ne sert à rien de permuter deux chiffres car cela revient à n'en permuter qu'une seule (Par exemple permuter les dizaines et les centaines revient à permuter les unités). Permuter les trois chiffres ne change rien (par exemple 654+318 et 318+654 est la même addition pannumérique).

3.4 Combien il y en a?

Il y a 31 résultats possibles, nous avons donc déjà 31 additions pannumériques et grâce aux permutations nous avons au minimum 124 additions pannumériques possibles (31x4=124). Pour certains résulats, il existe 2 types d'additions pannumériques. C'est à dire 2 additions pour lesquelles il est impossible de passer de l'une à l'autre par permutations. Nous avons trouvés qu'en tout, il y avait 168 additions pannumériques possibles. [5]

4 Conclusion

Nous avons donc vu que dans une addition pannumérique il y avait forcement une retenue et qu'elle avait une valeur de 1. Ensuite, nous avons démontré que la somme des chiffres du résultat est de 18 et que la somme des chiffres des termes est égale à 27. Concernant les résultats, il y a 31 résultats possibles. Et pour chacune des additions pannumériques nous en trouvons 3 de plus grâce aux permutations. Au final, il y a 168 additions pannumériques.

864	735 729 725 571	125 129 135 139 293 593 273 291		246 245 236 746 324 654 354 357	736 745 235 657 327 627 624	216 736 718 673 273 683 671	283		367 527 564 654 254 634 657	524 364 327 237 637 257 234
486	159 157 129 127		693	475 478 415 275	218 215 278 418		341 541 546 346	738	596 196 546 592	142 542 192 146
936	152 782	184 784 154 182	459	173 273 183 176	286 186 276 283	392 182	384 184 394 382	495	168 167 128 368	327 328 367 127
675	492			519 514 569 219 124 129 154 159	269 214 564 659	145 142	546 591		487 187 182 482	452 457
594	278 276 218 378	376	468	293 193 273 295	175 275 195 173	239 419	218 418 238 219	729	586 186 546 583	543
567	248 318 349 139 439 129	319		576 572 546 376 245 645 275 243	346 372	276 546 573 352 362 357	243 543 273 246 467 457 462 452	945	328 628 318 327 163 763 183 162	627 618 782 182 762
648	291 297 251 391	357 351 397 257	972	658 654 618 358	314 318 354 614	745 215	718 218 748 715	873	614 214 654 619	
549	187 367	162 362 182 167	846	317 517 319 327	527	158 638				

Notes d'édition

- [1] Si, comme le relecteur, vous l'ignoriez, "pannumérique" veut dire "constitué de tous les chiffres".
- [2] Il aurait peut-être été plus simple de dire que 2(g + h + i) est un nombre pair et ne peut donc pas être égal à 45.
- [3] Ici, les auteurs travaillent en faisant l'hypothèse qu'il y a des retenues à la fois sur les unités et sur les dizaines. D'où les égalités c + f = 10 + i, b + e + 1 = 10 + h et a + d + 1 = g.
- [4] [5] Il aurait pu être intéressant de savoir comment les auteures ont fait pour être certaines de ne pas avoir oublié de cas. Le relecteur étant paresseux, il a écrit un petit programme en python pour établir la liste des cas possibles, et il confirme que les nombres indiqués par les auteures sont exacts. Bravo!