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1 Research Topic
In order to model the management of fish stocks, we consider the deterministic Schaefer

model (1954). For that, we take into account a variable M (in tons) which represents the
maximum biomass that can live in a certain site and a variable r which represents an intrinsic
rate of growth (specific to each species of fish).

If we consider, for n ≥ 1 the variable Xn, which is the biomass for the year n, the model
gives the biomass for the year n+ 1:

Xn+1 = Xn + r Xn

(
1− Xn

M

)
− C,

where C is the amount fished by humans (1).
Let X0 be the initial biomass (given by a measurement).
Can we model, by modifying the parameters (initial biomass, the rate of reproduction,

amount of fishing in a year), all the possible situations (extinction, uncontrolled growth of the
species)?

2 Useful Tools
For the first approach, we used a C++ algorithm to help get a general idea of the problem.

The program below shows the biomass value for all the years until extinction (2), after reading
as input: the maximum biomass (M), the growth rate (r), the fished quantity (C), and the
initial biomass (X0).

i n t M,C;
double r ;
double x [ 1 0 0 0 ] ;

void nextgen ( i n t i )
{

x [ i ] = x [ i −1] + ( r ∗ x [ i −1] ∗ (1 − x [ i −1]/M) ) − C;
}

i n t main ( )
{

c in >> M >> r >> C >> x [ 0 ] ;
i n t i =0;
whi l e ( x [ i ] > 0 )
{

i ++;
nextgen ( i ) ;
cout << ” ” << x [ i ] ;

}
cout << i ;
re turn 0 ;

}
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3 Solution
3.1 First Approach

This approach belongs to Diana Harambaș. It was done with the help of Bianca Crișan.

3.1.1 Extinction

The first question we asked ourselves was regarding when will the species go extinct. Hence,
we calculated the value of Xn for which Xn+1 is 0, i.e. we have extinction at the (n+ 1)th

generation.
Solving the following second degree equation (1 + r)x− r

M x2 −C = 0, we obtain the roots:

(1 + r) +
√

(1 + r)2 − 4rC
M

2r
M

and
(1 + r)−

√
(1 + r)2 − 4rC

M

2r
M

.

Obviously, the biomass is positive or null, but never negative. Hence, we need the pos-
itive root of the equation. Luckily, both solutions turned out to be positive, as 1 + r >√
(1 + r)2 − 4rC

M . If there is an n for which Xn has one of the values above or is is outside
the interval between these two values, then the next year the species will go extinct (when the
next value is negative, there is still extinction).

3.1.2 Particular case: C = 0

This is the case where no fishing is done and the natural growth of the species is followed.
When representing the growth on Geogebra, the majority of graphs (but not all) converge to
M , the maximum biomass. See Figure 1 below:

Firstly, let us study the variation and possible equilibrium points of this case. Between gen-
eration t and t+1 we have a biomass variation of Xt+1−Xt = rXt (1− Xt

M ). Let such a variation
be represented as:

∆x =
dx

dt
= rx (1− x

M
)

Remark: Considering the differential equation, we move to a continuous time model. But
the results may be very different from those in the discrete time model.

We can find the equilibrium points by solving ∆x = 0. Thus, 0 and M are the equilibrium
points. This means that for any t, if Xt is 0 or M, then Xn = Xt for all n ≥ t.
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Knowing that M is the maximum biomass that can be in the lake, we can state that x ≤ M ,
so x

M ≤ 1 and ∆x = rx(1− x
M ) ≥ 0 (in fact this is guaranteed by the model only for certain values

of r - not for large values). As the variation is always positive, we can affirm that the sequence
(Xn)n≥1 is ascending (or constant). For any n, it is known that 0 ≤ Xn ≤ M , which gives the
last necessary condition for stating that (Xn)n≥1 is convergent. Obviously, the sequence must
converge to an equilibrium point, so to either M or 0. Given that (Xn)n≥1 is ascending, we
conclude that

lim
n→∞

Xn = M.

So, in a case where no fishing is done, if a fish species starts out with any strictly positive
initial biomass, after many generations, the yearly biomass will end up as close to M as possible.

The question one has to ask oneself is: Is this biologically accurate? We have to consider
environmental parameters as well, i.e. the lake dimension, the water volume, but most impor-
tantly the growth rate of the edible resources. In an ideal case, where the food resources follows
a recurrence relation similar to the fish species one and has a greater growth rate, then there
will forever be enough food for the fish stock. But, in reality, this might not be the case.
Formula: The differential equation dx/dt = rx (1 − x/M) allows us to calculate the value of
Xt for all t ≥ 1 by using basic integration rules. Thus,

Xt =
MX0 e

rt

M +X0 (ert − 1)
for all t ≥ 1.

This is the solution for the continuous time model. Then we have always convergence towards
M (except when X0 = 0), whereas a periodic or cahotic variation may appear in the discrete
model, as shown below.

Remark: We have considered a small rate r that does not let our fish biomass exceed the
maximum possible M . But by analysing x + rx(1 − x/M) > M , we realized that if there is
any n ≥ 1 for which r > M/Xn, then Xn+1 > M , making it impossible for the species to live,
and leading to a negative variation and a sudden drop in the biomass of Xn+2 (the biological
species will fight over resources and space). So, convergence is not guaranteed for sufficiently
large values of r (3).

The graph of such a case can take many forms - forms describing a growth which we consid-
ered uncontrollable - but it is easily visible that the values alternate from being greater than M
to being less, as shown in Figures 2, 3, 4 and 5. Figure 5 especially is a good example of what
we considered as uncontrollable growth.

Here the rate is 2, the initial biomass is 11 and the maximal one is 70. The complete Geogebra
graph shows all values Xn up to n = 1000.
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In Figure 3, the rate is now 2.2, and the other values are kept the same.

Figure 4 presents the same set of parameters for the initial biomass, the maximal biomass and
number of generations. But because we want to emphasize what great impact has changing one
parameter (namely, the intrinsic growth rate), we set r = 2.5.

In Figure 5, the rate is now 2.8, and the other values are the same. It is easily visible that this
growth does not seem to follow a pattern, at least not when looking at a small data set of just
1000 generations (on the figure above, just 360 generations were illustrated, to fit the image
format and increase visibility on individual values).
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3.1.3 General case: Arbitrary C

This is the case where the fished amount C is an arbitrary nonzero number. Of course, the
inequality C < M is true. From our Geogebra graphs and data tests done with the C++ code,
we obtained mostly sequences convergent to 0, so cases where the species will go extinct. This
time, the variation differential equation (again, a continuous time model is studied) is:

dx

dt
= rx

(
1− x

M

)
− C,

making it harder to integrate if C is arbitrary and not a function of x (4).

dx

dt
= rx

(
1− x

M

)
− C ⇐⇒ dx

rx(1− x
M )− C

= dt ⇐⇒ dx
rx2

M − rx+ C
= −dt

⇐⇒ M

r
· dx

x2 −Mx+ CM
r

= −dt ⇐⇒ M

r
· dx

(x− M
2 )

2 − M2

4 + CM
r

= −dt

Let u = x− M
2 . This simplifies our calculations, as now we have to integrate

1

u2 +M(Cr − M
4 )

So, we have this new mathematical relation:

M

r

∫
du

u2 +M(Cr − M
4 )

= −
∫

dt ⇐⇒ M

r

∫
du

u2 +M(Cr − M
4 )

= −t+ α,

where α is a constant (found from the initial conditions). How to solve this depends on the sign
of M(Cr − M

4 ).

Case 1: C

r
=

M

4

The new equation is:
M

r

∫
du

u2
= −t+ α1

Basic integration rules lead us to the following equivalent equations:

−M

r
· 1

ut
= −t+ α1 ⇐⇒ ut =

M

(t− α1)r
⇐⇒ Xt =

M

2
+

M

(t− α1)r

This integration has to be done only over an interval where the function to be integrated is well
defined. Here we must choose ut ∈ (−∞, 0) or ut ∈ (0,+∞), according to u0 < 0 or u0 > 0. In
the first case α1 > 0, the solution ut is not defined for t ≥ α1, and we get ut → −∞ as t → α1,
which actually means that we get Xt = 0 and extinction before t = α1 (5).

The constant should not be independent of X0, as it is found by analysing the initial biomass
value (generation t = 0).

X0 =
M

2
+

M

−α1r
⇐⇒ X0r

M
− r

2
= − 1

α1

α1 =
2M

Mr − 2X0r

Thus, the value of the biomass of any t-th generation can be determined by the formula:

Xt =
M [t r (M − 2X0)− 4X0]

2 [t r (M − 2X0)− 2M ]
.
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Case 2: C

r
>

M

4

In this case, we can use another notation to simplify the equation. Hence, let N be a
N =

√
M(Cr − M

4 ). That gives us the equivalent equation:

M

r
·
∫

du

u2 +N2
= −t+ α2.

When it comes to solving it, we use the calculus knowledge we have.
The equivalence below is valid only when the argument Nr(α2 − t)/M of the tangent lies between
−π/2 and +π/2. When t → α2 +Mπ/(2Nr), the tangent tends to −∞, which in reality means
that extinction occurs before. However, in this case du

dt ≤ − 1
N2 and this clearly shows that we

have extinction, without the need of calculations.

M

r

1

N
· arctan

(ut
N

)
= −t+ α2 ⇐⇒ ut

N
= tan

(Nr(−t+ α2)

M

)

⇐⇒ ut =

√
M
(C
r
− M

4

)
· tan

r ·
√
M(Cr − M

4 )(−t+ α2)

M


⇐⇒ Xt =

M

2
+

√
M
(C
r
− M

4

)
· tan

r ·
√
M(Cr − M

4 )(−t+ α2)

M

 ,

where α2 can be found from the initial data, i.e. from X0.

α2 =

√
M
(
C
r − M

4

)
· arctan

(
(2X0−M)·

√
M(C

r
−M

4
)

2M ·(C
r
−M

4
)

)
r ·
(
C
r − M

4

) .

Putting together these last two formulas, we obtain that, at the t-th generation, the biomass
value will be (6):

Xt =
M

2
+

√
M
(C
r
− M

4

)
· tan

(
r ·
√
M(Cr − M

4 )(−t+

√
M(C

r
−M

4
)·arctan(

(2X0−M)·
√

M(Cr −M
4 )

2M·(Cr −M
4 )

)

r·(C
r
−M

4
)

)

M

)
.

Case 3: C

r
<

M

4

In this particular case, M(Cr − M
4 ) < 0, making us define the helpful parameter N as

N =
√

M(M4 − C
r ). The equation now looks like the following:

M

r
·
∫

du

u2 −N2
= −t+ α3.

Solving this requires much more advanced knowledge. It is almost basic calculus until we
obtain the relation below:

ln

∣∣∣∣ut −N

ut +N

∣∣∣∣ = 2Nr(−t+ α3)

M
⇐⇒

∣∣∣∣ut −N

ut +N

∣∣∣∣ = e
2Nr(−t+α3)

M .

This case we thought was uncontrollable, because we couldn’t at first analyse whether ut
is greater or smaller than N . But again, integration has to be done on an interval where
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(ut −N)/(ut +N) has constant sign, i.e. (−∞, N), (−N,N) or (N,+∞) depending on the ini-
tial value and there is no jump from one of these intervals to another (this might be different in
the discrete time model).

Extinction may still occur. Namely, if u0 < −N , we have (u0 −N)/(u0 +N) > 1 and thus
α3 > 0. Then we get

ut = N
e2Nr(α3−t)/M + 1

e2Nr(α3−t)/M − 1

as long as this function is continuous, i.e. for t < α3, and when t → α3, then ut → −∞ (7).

3.1.4 General case: C = pXn

This is the case where the fished quantity is calculated every year, as a part p of that
generation’s biomass, meaning that C = p ·Xn. Moreover, this is most likely to be the situation
closest to reality, as it is the most reasonable when it comes to choosing the fishing biomass with
regards to the current quantities.

The recurrence relation here is:

Xn+1 = Xn + rXn

(
1− Xn

M

)
− pXn

= Xn + rXn

(r − p

r
− Xn

M

)
The steps we are going to follow are the same as in subsection 3.1.2. Let’s study the

the variation and possible equilibrium points. Defining the variation between generation t + 1

and t in the same way as in the previous subsections, we are able to state that ∆x = dx
dt =

rx ( r−p
r − x

M ).

The equilibrium points are the positive real roots of ∆x = 0. Hence, 0 and M(r−p)
r are the

values we were looking for.
Now, as for the sign of ∆x – sign which determines whether the sequence is ascending or

descending –, we can easily see that it is all a matter of comparing Xt to M(r − p)/r. While
Xt < M(r − p)/r, then the sequence is ascending. Else, while Xt > M(r − p)/r, then the
sequence is descending. But because M(r − p)/r is an equilibrium point and supposing X0 is
non-null, then Xt should converge to M(r − p)/r in the continuous time model. In the discrete
time model, though, periodic or chaotic behavior is possible, as in subsection 3.1.2. (which is
the particular case p = 0).

We wanted to find the formula for any Xt, by solving the differential equation:

dx

dt
= rx

(r − p

r
− x

M

)
.

We will arrive to a logarithmic equation involving a modulus and just as we cannot state
the monotony of the sequence because we must compare Xt to M ·(r−p)

r , now we cannot decide
the sign of the expression within the modulus.
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3.2 Second Approach
This approach belongs to Petru Săveanu and Hugo Giret.
We took the functions g and f where:

g(x) = x (r + 1)− r
x2

M
− C and f(x) = r x− r

x2

M
− C,

(g(x) = x+ f(x)).
In other words, the function f is the difference between 2 years and the discriminant of the

quadratic polynomial f is:
∆ = r2 − 4 r

C

M

We chose to study the function f because it explains the evolution from year to year. For
example, if the function is positive, it means an increase in quantity, if it is negative it will lead
to extinction, and if it is once zero, the result will be stagnation.

3.2.1 Case 1: ∆ < 0

For all x, f(x) < 0, so g(x) = x+ f(x) < x. Then X0 > X1 > . . . > Xn.

Considering the graph of the function f , the differences will get bigger and bigger, by approaching
the quantity of 0, the origin of the system, and the differences are bounded from below, so the
result will be obvious extinction.

3.2.2 Case 2: ∆ = 0

C

r
=

M

4
⇒ f

(M
2

)
= r

M

2

(
1−

M
2

M

)
− C =

rM

4
− C = 0

The only point where f(x) = 0 is M
2 (and f(x) < 0 elsewhere). If X0 is less than M

2 the
result will be extinction, because we are in the same situation as in the previous case.

Thus, we will look for the points that bring the biomass below the value of M
2 , trying to

calculate the distance from M
2 , called a (8).

g
(M
2

+ a
)
<

M

2
⇐⇒ M

2
+ a+ r

(M
2

+ a
) (

1−
M
2 + a

M

)
− Mr

4
<

M

2

⇐⇒ a < a2
r

M
⇐⇒ M

r
< a

This means that if X0 belongs to the interval
(
M
2 ,

M
2 + M

r

)
, g(x) > M

2 , but because f(x) ≤ 0

for all x, X0 > X1 > . . . , the decrease limit being M
2 .

If X0 does not belong to that range, the result will be extinction.
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3.2.3 Case 3: 0 < ∆ ≤ 1

We chose this case because we can choose a clearly defined interval to obtain balance, and
uncontrolled growth is impossible. We used the graph of the function f and the first derivative
of the function g to obtain intervals of monotony:

g′(x) = r + 1− x
2 r

M

For any x in range of x1 = r−
√
∆

2r/M and x2 = r+
√
∆

2r/M , where f(x1) = 0 and f(x2) = 0, we have
g′(x) ≥ 0 since

g′(x2) = r + 1−
(r +√

∆
2 r
M

) 2 r

M
= r + 1− r −

√
∆ = 1−

√
∆

x1 < x < x2 ⇒ g′(x1) > g′(x) > g′(x2) = 1−
√
∆ ≥ 1− 1 = 0

So, x1 = g(x1) < g(x) < g(x2) = x2 if x1 < x < x2.
Using f(x) > 0 when x1 < x < x2, we obtain x1 < X0 < X1 < X2 < . . . < Xn < x2,

balance, if x1 < X0 < x2, and x1 > X0 > X1 > X2 > ..... > Xn meaning extinction if X0 < x1.
For X0 > x2 we can obtain balance or extinction, depending on the distance from x2 (9).

3.2.4 Case 4: ∆ > 1

This is the only situation when Xn could be greater than M . Due to the very large variation
of values in two consecutive years, we studied the situation when X1 is greater than M .

We took the function h, where h(x) = g(x)−M and we calculated the roots of the equation.

h(x) = g(x)−M = x (r + 1)− r
x2

M
− C −M ⇒ ∆′ = (r + 1)2 − 4r

C +M

M

Then we consider the points P = r+1−
√
∆′

2r/M and W = r+1+
√
∆′

2r/M for which g(P ) = M and
g(W ) = M (10).

Because X0 is smaller than M , and g(x) > x only if x1 < x < x2, we create an interval(
max(x1, P ),min(x2,W )

)
by joining the interval (x1, x2) with the interval (P,W ) (11). If X0

belongs to that interval, X1 ≥ M .
Using the properties of the functions f and g, which depend on the values of the discriminant,

we can manipulate C, r and X0 to obtain extinction, equilibrium and uncontrolled growth.
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4 Conclusions
Looking at the first approach, we can observe that formulas can be found, but they are

different and depend on the relationship between the given parameters C, M and r. Moreover,
some cases are harder to follow and, from the knowledge we possess now, can be considered as
cases of uncontrollable growth.

From our previous work, we observed different types of curves depending on the value of ∆ =
r2 − 4r C

M : The extinction curve for ∆ < 0, the constant curve, the “alternating”/“sinusoidal”
curve, the scattered one, etc.

We can introduce an environmental variable considered as a random variable Vn that can
take for example the three possible values 0.5, 1, and 1.5, which represent the variability of the
year n, and it is introduced the model: Xn+1 = (Xn+r ·Xn ·

(
1− Xn

M

)
−C)·Vn; we obtain unusual

cases, creating new types of curves that seems non-periodic and hard to define. Studying this
evolution type is one of our next research goals.

The Schaefer Model is not a perfect one: it is a discrete mathematical model, meaning that
the fish population is calculated every year; in real life, environmental facts and events could
influence so much that the fish could disappear in 6 months, for example, and so the model
would not work. To be more accurate, we should take more parameters (related to the aquatic
habitat) into consideration.

5 Other Contributors
Other contributors to this research topic within the “Mathematics for Sustainable Devel-

opment” project were Codruța Jucan, Horațiu Cătărig, Alexandru Coroiu, Sony Șipos, Dimitri
Czornomaz, Alexis Dekeyser, Théo Brittain, Diégo Mekarcha, Lou-Anne Le Bris, Lucas Fernan-
des, Valentin Virga.
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Editing Notes

(1) This recurrence relation is closely related to the so-called logistic map
(
xn+1 = axn(1−xn)

)
.

(2) In this program, it is assumed that extinction occurs, which is of course not always the
case. The loop “while(x[i]>0)…” should also be stopped before the table size is reached.
(3) More precisely, we have x+rx(1−x/M) > M when x is between M/r and M . So, starting
with X0 ∈ [0,M ], when r ≤ 1 we shall get Xn ∈ [0,M ] for all n, an increasing sequence and
convergence towards M , as explained above. But as soon as r > 1, the same proof shows that
the sequence is increasing as long as Xn < M/r so that for some n we get Xn > M/r and
then Xn+1 > M . However convergence can still occur if r is not too large.
A wide variety of behaviors can be found by increasing the parameter r. In the figures below,
we first see convergence, then oscillation between two values, then between four values and
then chaos in the last case.
(4) In the next equations, before dividing by rx

(
1− x

M

)
−C it should be mentioned that the

roots of this polynomial, denoted by x1 and x2 in section 3.2.3 below, yield constant solutions
Xt = x1 and Xt = x2, and that in any other case we can assume that the denominator is
non-zero.
(5) So, we have extinction if u0 = X0 − M

2 < 0, i.e. if X0 < M
2 , and then the formula for

Xt given below is valid only for t < α1. The case X0 = M
2 yields the constant solution

Xt = x1 = x2 = M
2 and in the case X0 > M

2 , we have α1 < 0, the given solution Xt is well
defined for all t ≥ 0 and converges towards M

2 .
(6) Again, the formula below is valid only before extinction.
(7) Here, u0 = N and u0 = −N yield the constant solutions, and in the cases −N < u0 < N
or u0 > N the same calculation yields solutions ut well defined for all t > 0 and converging
towards N .
(8) Here, a is assumed to be positive.
(9) As mentioned by the authors in a previous version of this work, we can exploit the
symmetry of the function g: we have g

(
r+1
r M − x

)
= g(x); so, when r+1

r M − x2 ≤ X0 <
r+1
r M − x1 then x1 < X1 ≤ x2 and we obtain convergence towards x2, and when X0 >

r+1
r M − x1 then X1 < x1 and there is extinction.

In the remaining case x2 < X0 < r+1
r M − x2, one can show x2 < . . . < X1 < X0 and again

convergence towards x2 (the proof is left to the reader).
(10) These points P and W may not exist, since the discriminant ∆′ can be negative, depend-
ing on the values of r and C/M , and then g(x) < M for all x.
(11) We have x2 ≤ M since ∆ ≤ r2 and g′(x) < 0 for x ≥ x2 since ∆ > 1, from the above
proof section 3.2.3. It follows that we cannot have g(x) > M outside (x1, x2) and the new
interval

(
max(x1, P ),min(x2,W )

)
is simply (P,W ).

However, the fact that X0 belongs to this interval is not enough to determine if we have
extinction, convergence or “uncontrolled growth”. This case includes the particular case C = 0,
r > 1, studied section 3.1.2 (if C = 0, then ∆ = r2) where different evolutions appear, but the
problem of deciding which kind of evolution occurs according to the parameter value remains
unsolved
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