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Abstract

Since ancient times, the grid street map has been widely used in the urban planning of
cities. Examples include ancient Giza, Babylon, Rome, as well as modern cities like Man-
hattan, Barcelona, and Lyon. In these cities, the streets run at right angles to each other,
forming a grid. The frequent intersections and orthogonal geometry facilitate move-
ment, orientation, and wayfinding.
In this article, we address some problems associated with such a grid street map.
The first chapter deals with the shortest path problem. When all segments of the grid
are of uniform length, there are multiple shortest paths between two points, all with the
same total length. The challenge here is to count the number of these shortest paths.
When the segments have different lengths, the paths will generally also have different
lengths, and the problem becomes finding the shortest path.
In the second chapter we model the grid as a metric space using Manhattan distance,
considering only the intersections as points of interest. After developing some classi-
cal geometric notions in this setting, we apply them to address some urban planning
issues. In particular, we introduce a new definition for the straight line and provide two
algorithms to compute the resulting point-line distance. We then study conics and their
properties in this geometry, applying them to solve some planning issues. With another
geometric locus, the axis of two points, we address the problem of dividing the city be-
tween hospitals and determining the minimum number of hospitals needed to cover the
city to ensure rapid medical aid.

Finally, in the last chapter we attempt to generalize the space by considering all points

on the grid as points of interest.
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Chapter 1

Minimal Paths

1.1 Counting the number of minimal paths

Our first task is to compute the possible ways to get from a point A to a point B in a city that has
only streets perpendicular to each other, where the intersections of the streets represent the points of
tourist interest of the city.

Figure 1.1: Example of the grid and two points on it

We found a way to answer the following questions:

Question 1 How many different ways are there to get from a point A to a point B?

Question 2 How many ways to get from a point A to a point B going through a point C ?

Question 3 How many ways to get from a point A to a point B going through a street C D?

Question 4 How many ways to get from a point A to a point B without crossing a point C ?

Question 5 How many ways to get from a point A to a point B without crossing a street C D?

Question 6 How many possible ways to get from A to B withoutcrossing the points C and D?

Question 7 How many ways to get from a point A to a point B crossing a diagonal C D?
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1.1.1 Question 1: How many different ways are there to get from a point A to a point B ?

We found two methods to answer to this question.
• First idea: Looking at the Figure 1.2, starting from the top-left point A suppose we want to

arrive at the bottom-right point B . Provided that going up or left surely leads to a non minimal path,
we noticed that there are multiple ways to arrive at the point B and that each path is described by a
permutation with repetitions of the letters D (down) and R (right) like in the following images:

DRDDRRDRRR RRDRRRDRDD RDRDRRDRRD

Figure 1.2: Examples of ways to connect two points

So, given a city with v vertical blocks and h horizontal blocks, the numbers of different minimal paths
to get from A to B are

nAB =
(

v +h

v

)
= (v +h)!

v ! ·h!

• Second Idea: We calculated all the paths that arrived from A to C and from A to D . Then there
is only one way to pass from C to B , and the same from D to B . Similarly, to compute nAC we have to
add nAE +nAF and so nAB = nAC +nAD .

The idea is the same as that of the Pascals triangle:
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1.1.2 Question 2: How many ways are there to get from a point A to a point B going
through a point C ?

In order to understand how many possible ways there are to go from a point A to a point B passing
through a point C we realized that every path that goes from A to C can be continued with every paths
that goes from C to B . That is why we use the multiplication to get the total number paths:

nAC B = nAC ·nC B

1.1.3 Question 3: How many ways are there to get from a point A to a point B going
through a street C D?

Then we tried to imagine to have in our "Gridland" a street where we are obliged to pass through.
How many possible paths there are to or from a point A to a point B passing through a street C D? The
criterion is the same of the previous one but in this case we have to multiply the paths that go from A
to C (the start of the path) for the paths that go from D (the end of the path) to B .

nAC DB = nAC ·nDB

1.1.4 Question 4: How many ways are there to get from a point A to a point B without
going through a point C ?

Once we found the possible paths to go from a point A to a point B without passing through a point C ,
we tried to calculate the paths that go from A to B without passing through a point C . We immediately
get

nAB\C = nAB −nAC ·nC B
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1.1.5 Question 5: How many ways are there to get from a point A to a point B without
going through a street C D?

The criterion is the same of the previous one, and we have

nAB\C D = nAB −nAC ·nDB

1.1.6 Question 6: How many possible ways are there to get from A to B without going
through the points C and D?

Now the case becomes more difficult because we have to differentiate the problem into two cases: In
the first one there are no minimal paths that cross both the two points. In this case we can proceed
with the same logic used to answer the question to do not pass trough a point, using this formula:

nAB\C ,D = nAB −nAC ·nC B −nAD ·nDB

The other case happens when there is some minimal path that goes from A to B crossing both the
points C and D . In this case we have to do a series of passages to find out how many possible paths
there are to go from A to B without passing through C and D . First we have to multiplicate the paths
that go from A to C for the paths that go from C to B . Second we have to multiplicate the paths that go
from A to D for the paths that go from D to B . Then we have to add some paths that we have removed
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more that one times. So we have to add the paths find by the multiplication between the possible
paths that go from A to C , the paths that go from C to D and the paths that go from D to B . So we
have summarized this case in this formula:

nAB\{C ,D} = nAB −nAC ·nC B −nAD ·nDB +nAC ·nC D ·nDB

1.1.7 Question 7: How many ways are there to get from a point A to a point B going
through a diagonal C D?

This is a generalization of the Question 3. In fact we could consider a diagonal like the street that form
the right triangle, with the diagonal as hypotenuse. To calculate the possibilities to go from A to B we
can use the formula:

nAC DB = nAC ·nDB

because every path that go from A to C can be continued by every every path that start from the end
of the diagonal, D , to B .

1.2 Minimal path with weighted edges

So far, a constant length has been assumed for the various segments building up the grid. We shall
now attempt to generalize this by allowing each edge to possess a specific length, resulting in weighted
edges. Unlike the previous case, here different paths will have in general different lengths, so the goal
here becomes to find the shortest path.

1.2.1 Dijkstra’s algorithm

In this setting, Dijkstra’s algorithm is a procedure that finds the minimum distance between one spe-
cific point, called starting node, and all the other points in the map. The algorithm presented here,
despite its similarity to the original one, has undergone slight modifications, which, however, do not
affect the original concept: avoiding the recursion, it finds the shortest path in a graph, which in this
particular case is the grid made up of streets perpendicular to each other, whose weight can model
some notion of distance (length of the street, time required to go through, cost of the travel, . . . ).

The map is a grid (i.e. a lattice graph) where every node has these attributes:

• name: we used a integer in an ascending order
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• distance from the start

• previous node (of the shortest path from the start)

Every node is linked to others by streets, each having its own weight (chosen randomly between 1 and
9, just to make it easier for us to check the process). The streets that are beyond the borders of the
map have a infinite value, since they must not be analyzed. Also once the streets are analyzed their
value becomes infinite so that they do not get explored again, avoiding dead-locks.

The starting node is chosen at the beginning (we take 1 in the example). A list keeps track of the
current estimated minimal distance between the starting node and each other node; this list is always
kept ordered with respect to the value of the distance (1). At first all nodes have infinite distance, apart
from starting node which have distance 0 from itself. Hence the starting node is always the first to be
analyzed.

The following example illustrates how the algorithm works.

1.2.2 Dijkstra’s working example

The city that we are going to consider is depicted in Figure 1.3: it is a square 3× 3 grid, where the
white dots represent the nodes, numbered in ascending order, and the blue segments denote the
streets with their weights.

Figure 1.3: Initial configuration

The algorithm starts analyzing the first node of the list (the starting node “1” in the example).
Then it compares all the available roads connecting the point "1" to the adjacent nodes (see Figure 1.4,
in order to select the shortest one. In this case, the shortest one is the road linked to the point “4”,
which will be the next one to be analyzed.

Figure 1.4: Comparing nearest-neighbour nodes

Now the distance from the start of the point “4” equals the sum of the distance from the beginning
of the previous point, and the weight of the road that links the previous to the current one.
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If this distance is less than the one already memorized, it will be updated to the new one (in case
this point has never been analysed, the saved distance is infinite so the new one is always less). In
this case, the infinite distance updates to (0+2=2). Then also the list will be updated and “4” will be
placed right after the point "1".

Since the point “1” is still the first one in the list, the algorithm analyses the road 1-2 and the point
“2” like it did for the road 1-4 and the point “4”.

So the algorithm finds that the distance between the start and the point “2” is (0+5=) 5, and the
list is updated. Now, the algorithm returns back to the first point of the list, which is still “1”, but it will
not find any available road to be analyzed, so it ignores the first one and moves on to the second one
in the list, “4”.

This same procedure now applies to all the other points remaining in the grid, until the list of
points and distances from the start is completed and all the roads have been analyzed. At the end the
values memorized in the list represent the minimal distances from the starting node to the node.

Once the algorithm has already analyzed all the roads, we consider the arrival node. Since all the
points have been analyzed and have not only a shortest distance from the start but also a previous
point, the algorithm can follow the steps from the arrival back to the starting point and reconstruct
the shortest path.
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In this example, choosing “1” as the starting point and “9” as the arrival, the shortest path is the
one going through the nodes “1”, “4”, “5”, “8”, “9”, whose length is 12. We can notice that the path going
through “6” instead of “8” has the same length; in a case like this the algorithm will only memorize
the first, since the path changes only when a strictly shorter distance is found.
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Chapter 2

Urban planning issues

2.1 The metric space Z2 with Manhattan distance

Definition 1. The plane is defined as the metric space (Z2,d); its elements (x, y) ∈Z2 are called points.
The distance function d between two points A = (xA , y A) and B = (xB , yB ) is defined as

d(A,B) = |∆x|+ |∆y | = |xA −xB |+ |y A − yB | (2.1)

This distance function measures the length of the shortest path between the two points A and B ,
when only the vertical or horizontal streets of the grid are allowed (for this reason it is called Manhat-
tan distance or taxicab geometry).

Theorem 1. The distance function satisfies the following properties:

I) d(A,B) > 0 ⇐⇒ A ̸= B

II) d(A,B) = 0 ⇐⇒ A = B

III) d(A,B) = d(B , A)

IV) d(A,B) É d(A,C )+d(C ,B)

Proof. We are going to prove each point of the theorem. I, II) By eq. 2.1 the function is computed as the
sum of non-negative quantities so d(A,B) Ê 0 and in particular d(A,B) = 0 ⇐⇒ xA = xB and y A = yB ,
therefore the first two properties are satisfied.

III)
d(A,B) = |xA −xB |+ |y A − yB | = |xB −xA|+ |yB − y A| = d(B , A)

for the definition of absolute value |x| = |− x| therefore the third property is satisfied.
IV)

|xA −xB | = |xA −xC +xC −xB | É |xA −xC |+ |xC −xB |
|y A − yB | = |y A − yC + yC − yB | É |y A − yC |+ |yC − yB |

Adding member-wise the two inequalities we get

|xA −xB |+ |y A − yB | É |xA −xC |+ |y A − yC |+ |xC −xB |+ |yC − yB |

and therefore
d(A,B) É d(A,C )+d(C ,B).

Then the fourth property is satisfied.

Definition 2. A straight line is defined as the non-empty set of the intersection points between the
plane and the euclidean straight line.
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In order to have points, the angular coefficient and the constant term must be rational. Hence the
equation of the straight-line can be written as

y = p

q
x + s

t
x, y, p, q, s, t ∈Z q ̸= 0 and t ̸= 0

qt y = pt x + sq

Let a = pt , b =−qt , c = sq ∈Z, then the straight-line can be represented by the equation

ax +by + c = 0 a,b,c ∈Z

Moreover, by Bézout’s Identity we get that −c must be a multiple of the GC D(a,b).
Infact, denoted with d this GC D , we have a = dh, and b = dk for some integers h,k ∈Z. Hence

−c = ax +by = dhx +dk y = d(hx +k y)

The previous constraint is trivially satisfied when we assume without loss of generality that a and b
are coprime.

Figure 2.1: Example of a straight-line in Z2

2.2 Point-line distance

Definition 3. The point-line distance is defined as the minimum distance between the point P and
the points of the straight-line r .

In order to establish the value of the distance point line, as there is no closed forumula for it, we
have developed two algorithms that are based on the same idea but differ in the procedure.
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2.2.1 Point-line distance first algorithm

We provide first an example to illustrate the procedure which will be generalized afterwards. Given a

point P = (6,1) and a straight line r : y = 3

2
x + 1

2
,

Figure 2.2: Graph of the straight-line r (x) (isolated points) and P

Let’s now define the function that expresses the distance of each point of the straight-line from P :

d(x) = |x −6|+
∣∣∣∣3

2
x − 1

2

∣∣∣∣ (2.2)

Figure 2.3: Graph of f (x) the point-line distance function

As we can see from the graph, this function presents a minimum in α, however the point with this

abscissa could not belong to the straight-line. In fact, in this case α = 1

3
so it cannot belong to the

straight-line, but it will certainly lies between two points that belongs to r . In order to find these
two points we consider the integer part of α and we subtract a unit iteratively until its image on the
straight line is an integer as well.

r (⌊α⌋−k) with k ∈N

In this case r (⌊α⌋−1) =−1 and consequently we define the point A = (−1,−1).
From the equation of the straight-line we have ∆x (2) and we define the other point B = (⌊α⌋−1+

∆x,r (⌊α⌋−1+∆x)) ⇒ B = (1,2).

So the value of the point-line distance, recalling the distance point-point 2.1, is

dP,r = min(d(P, A), d(P,B)) = min(9,6) = 6 (2.3)
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Figure 2.4: Distances d(P, A) and d(P,B)

Generalization of the algorithm

Given a point P = (xP , yP ) and a straight-line r : ax+by+c = 0 we consider the function that expresses
the distance of each point of the straight-line from P ,

d(x) = |x −xP |+
∣∣∣−a

b
x − c

b
− yP

∣∣∣ (2.4)

This function can present 4 different graphs:

Point position Coefficient Graph

∣∣∣−a

b

∣∣∣= 1

yP > r (xP )

yP < r (xP )

−1 <−a

b
< 0 or − a

b
> 1

−a

b
<−1 or 0 <−a

b
< 1

yP > r (xP )

yP < r (xP )

−a

b
<−1 or 0 <−a

b
< 1

−1 <−a

b
< 0 or − a

b
> 1

yP = r (xP )

Each of these graphs presents exactly one minimum that we call α, apart from the first case that
we analyse in the end.

Since the point with abscissa α may not belong to the straight-line in Z2, if either α or its image
r (α) is not an integer, let’s look for the two points that belongs to r that lie next to α. In order to do

MATh.en.JEANS 2022-2023 Liceo “M. Casagrande”, Pieve di Soligo, Italy Page 14



that consider the integer part of α and its image on r (x), if this one is not an integer we iteratively
subtract a unit until its image is an integer.

r (⌊α⌋−k) k ∈N

We then define the points

A = (⌊α⌋−k,r (⌊α⌋−k)), B = (⌊α⌋−k +∆x,r (⌊α⌋−k)+∆x)

As we can see from each graph, every other point would be at a greater distance from P and hence
not useful to calculate the distance point-line, which is

dP,r = min(d(P, A), d(P,B))

In the first case, in which we have multiple minima, we consider all the integer minima and if none
of them has an integer image on r (x) we apply the same procedure as before on each of the extremes
of the horizontal segment of the graph.

2.2.2 Point-line distance second algorithm

Now we are going to present a different approach.

Algorithm structure

Given a point P = (xP ; yP ) and a straight-line r : ax +by + c = 0, let’s imagine we worked in R2 and
considered the (filled) straight-line: the point of r nearest to P would be the horizontal/vertical pro-
jection of P onto r , depending on whether the slope of r is greater/less than 1 in absolute value (the
abscissa of this point is the minimum α of the distance function d previously defined). As before, this
point in general does not belong to r , but surely lies between two points of r . How to determine these
points?

The key idea here is to observe that the points of r enjoy some periodicity: they follow each other
at step b for the abscissas, and step a for the ordinates, once we assume without loss of generality1

GC D(a,b) = 1.
We look for the first point after the y-axis, so the first point of the straight-line with non-negative

abscissa x0. In order to do that we consider the equation given by the reminders of the division2 by
the coefficient b of the straight-line equation.[

a · x +b · y + c
]

b = [0]b

[a]b · [x]b +�����[0]b · [y]b + [c]b = [0]b

[x0]b =−[c]b · [a]−1
b

We then define the numbers δ and δ′ that count by defect/excess3 respectively how many points
of the straight-line lie in between x0 and α.

δ= int
(α−x0

b

)
δ′ = δ+ sgn(δ)

These numbers could be both positive or negative depending on whether x0 is less or greater than α.
Then the two candidates for the searched nearest point of r are

1In general, when GC D(a,b) = d we can always divide by d both sides of the equation ax+by+c = 0, obtaining the steps
a
d for the ordinates, b

d for the absicssas.
2We denote with [x]b the remainder of the division x : b. Its inverse, denoted with [x]−1

b , is the number that multiplied
by [x]b gives [1]b , and is computed with the extended Euclidean algorithm.

3 int(x), the integer part of x, is equal to greatest integer less than or equal to x, denoted ⌊x⌋, if x Ê 0 and to the least
integer greater than or equal to x, denoted ⌈x⌉ if x < 0.

MATh.en.JEANS 2022-2023 Liceo “M. Casagrande”, Pieve di Soligo, Italy Page 15



A = (x0 +δ ·b;r (x0 +δ ·b)) B = (x0 +δ′ ·b;r (x0 +δ′ ·b))

and again, the point-line distance is the minimum of the distance between P and A and B :

dP,r = min(PA,PB)

An example for the second point-line distance algorithm

Given a point P = (7; 9) and straight-line r : 3x − 2y + 1 = 0 we consider the equation given by the
reminders of the division by 2:

[x]2 + [1]2 = [0]2 → [x]2 = [1]2 → x0 = 1

Figure 2.5: Graph of the straight line r (x) (isolated points) and P

The minimum of the distance function d(x) = |x −7|+ ∣∣3x−17
2

∣∣ being α= 17
3 , we obtain

δ= int
( 17

3 −1

2

)
= int

(7

3

)
= 2 δ′ = 2+1 = 3
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Figure 2.6: Graph of r (x), P and the representation of α and x0

Therefore we get the two candidate nearest points

A = (1+2 ·2;r (1+2 ·2)) = (5;8) and B = (1+3 ·2;r (1+3 ·2)) = (7;11)

Figure 2.7: Point-point distances between P and A and B , respectively.

Comparing the distances form P of A and B respectively, we get that the minimal is

dP,r = min
(
d(P, A),d(P,B)

)= min(3,2) = 2

2.3 Common geometric loci given the Manhattan distance

In this section we will show which shapes the classical geometric loci (e.g. circle, ellipse, parabola
and hyperbola) take in this metric space, using the definition of Manhattan distance. We will then
use these results to tackle some problems related to city planning.

2.3.1 Circumference

According to its definition, the circumference C is the set of all the points P whose distance from
another point C , the center, is equal to a parameter r ∈Z+, called radius:

C :=
{

P ∈Z2
∣∣∣ |xP −xC |+ |yP − yC | = r

}
MATh.en.JEANS 2022-2023 Liceo “M. Casagrande”, Pieve di Soligo, Italy Page 17



As a consequence of the new definition of distance between two points, we obtain the figure
shown in the Figure 2.8, which takes the shape of a rotated square.

Figure 2.8: Circumference

Length of the circumference

We define the perimeter of C as the cardinality of the set of distinct points forming the circumference:

pC = #
{
P ∈Z2 | P ∈C

}= 4r

We obtained this relation by projecting the points of the circumference onto the horizontal radius, as
shown in the following picture (Figure 2.9):

Figure 2.9: Circumference and visual proof of the formula

Furthermore, if we divide the circumference by 2r , which is the diameter, we obtain 2. This means
that, in this metric space, the constant π is equal to 2 (3).

Area of the circle

We define the area enclosed by the circumference as the cardinality of the set of the points whose
distance from the centre is less than or equal to the radius (Figure 2.10):

AC = #
{
P ∈Z2 | |xP −xC |+ |yP − yC | ≤ r

}= 2r (r +1)+1 (2.5)
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Figure 2.10: Visual proof of the formula

To get this result we can divide the circle into four triangles around a central point. The area of
each triangle is given by the sum of the first integers up to the radius, thus

Atr i = 1+2+ . . .+ r = r (r +1)

2

AC = 4Atr i +1 = 4
r (r +1)

2
+1

which simplifies to eq. (2.5).

2.3.2 Ellipse

We then moved on the study of the ellipse E , which we recall to be the locus of points P whose sum
of the distances from two foci F1 and F2 is equal to a parameter k:

E := {
P ∈Z2 | |xP −xF1 |+ |yP − yF1 |+ |xP −xF2 |+ |yP − yF2 | = k

}
(4)

Using our definition of distance, we obtain the following Figure 2.11:

Figure 2.11: Ellipse

As we can see, the pecularity of this geometric locus is that it can assume various shapes, depend-
ing on the relative position of its foci.
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The perimeter of the ellipse

We define the perimeter as the cardinality of the set of points belonging to E :

pE = #
{
P | P ∈ E

}= 2k

where the last equality is demonstrated by the image below (Figure 2.12):

Figure 2.12: Ellipse contour

The area of the ellipse

We define the area enclosed by the ellipse E as the cardinality of the set of the points whose sum of
the distances from the two foci is less than or equal to k.

AE = #
{
P ∈Z2 | |xP −xF1 |+ |yP − yF1 |+ |xP −xF2 |+ |yP − yF2 | ≤ k

}
(5)

We can obtain this area by observing that the ellipse is contained in a rectangle. We can see that,
if we subtract the area of four triangles at the corners of this rectangle, we are left with the area of the
ellipse (Figure 2.13).

Figure 2.13: Visual proof of the formula

By noting ∆x = |xF1 −xF2 | and ∆y = |yF1 − yF2 |, we have

Ar ect = (k −∆y +1)(k −∆x +1)

Atr i = 1+2+ ...+ k −∆x −∆y

2
=

(
k−∆x−∆y

2

)(
k−∆x−∆y

2 +1
)

2

AE =Ar ect −4Atr i = (k −∆y +1)(k −∆x +1)− 1

2
(k −∆x −∆y)(k −∆x −∆y +2)
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Limiting case

We can see that when k is equal to the distance between the two foci, we obtain for the ellipse E a set
of points enclosed by a rectangle (Figure 2.14). This happens because for all the points between the
foci the sum of their distances from them is precisly equal to the distance between the two foci itself.

Figure 2.14: Illustration of the limiting case

2.3.3 Hyperbola

Moving on to the hyperbola H , we define it as the set of points whose difference of distances from
two foci F1 and F2 is equal to a parameter k:

H := {
P ∈Z2 | ∣∣ |xP −xF1 |+ |yP − yF1 |− |xP −xF2 |− |yP − yF2 |

∣∣= k
}

(6)

We thus obtain Figure 2.15:

Figure 2.15: Hyperbola

Limiting case

In the particular case when k is equal to the distance between the two foci, the points that satisfy the
obtained equation lie on two portions of the plane, as shown in the following picture (Figure 2.16):
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Figure 2.16: Illustration of the limiting case

2.3.4 Parabola

Finally we define the parabola P as the set of points whose distance from a straight line d , the directix,
is equal to their distance from another point F , which is the focus.

Defining the parabolas whose directrix is parallel to either of the axis was no particular challenge.
It was much harder to work with parabolas whose directrix had a certain slope, since we do not have
a closed formula for the point-line distance. For this reason, we developed an algorithm to ease our
work. We obtained the following results (Figure 2.17):

Figure 2.17: Examples of parabolas
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2.4 Analysis of problem related to simple city planning situations

We then used the results to tackle problems related to urban planning and find optimal solutions to
the organization of the city. In particular we have answered the following questions (illustrated in
Fig. 2.18):

Question 1 Some children are participating in a treasure hunt and they know that clues are all placed
within a certain distance from the starting point. Where should they look for them?

Question 2 If a university student has a side-job, where should he rent an apartment such that the
sum of its distances from the university and the workplace does not exceed a given distance?

Question 3 A couple lives in the same apartment, but the two of them work in different places. Where
would be the best place to rent an apartment?

Question 4 Someone lives in an apartment which is equally distant from a park and a series of metro
stations along a straight line. Where is his house located?

(a) (b)

(c) (d)

Figure 2.18: Examples to questions related to urban planning situations
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The answers to these questions are areas enclosed by, respectively, a circumference, an ellipse, a
hyperbole and a parabola which were previously discussed in the article.

1. If all the clues are placed within a certain distance from the starting point (which will be the
center), their distribution will look like that depicted in Figure 2.18a.

2. If we consider his apartment and the university as 2 foci, we can deduce that, if the sum of the
distances does not exceed a given length, we obtain an area enclosed by an ellipse (Figure 2.18b)

3. The optimal solution is to find an area where the distances from the two workplaces do not
differ by much, which is outlined by an hyperbole (Figure 2.18c)

4. We can easily deduce that the metro line is the directrix of a parabola, whose focus is repre-
sented by the park (Figure 2.18d).

2.5 Other questions related to urban planning and their relation to the
concept of axis

Let’s consider the rectangular city with dimensions l ×h with l ,h ∈Z+. In this section we are going to
discuss the following questions:

Question 1 Given two points of interest A(xA ; y A), B(xB ; yB ) ∈ Z2 of the city, where can we find a
house in the city at the same distance from the two points?

Question 2 Given a positive integer n ∈ Z+ of hospitals, how can we divide the city in areas so that
each area has only one hospital and the distance between every point of the area and the re-
spective hospital is less than that of any other hospital?

Question 3 Given a l × l city and a maximum distance r ∈ Z+, what is the minimum number N of
hospitals that cover the city so that the distance from every point to the nearest hospital is less
or equal to r ?

2.5.1 Living at the same distance from two points of interest

Given two points of interest A(xA ; y A),B(xB ; yB ) ∈Z2 of the city, where can we find a house in the city
at the same from the two points?

The set of the houses

Let’s consider a 5×5 city and two points A(2;4) and B(3;1):
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To find a house in the city which has the same distance between the two points we have to find
the locus L of all the points of the plane Z2 that have the same distance from A and B . To do that
we can simply equal the distance of a generic point P (x; y) from A to its distance from B and find the
integer solutions of the equation that we’ll find:

d(P, A) = d(P,B) →|x −xA|+ |y − y A| = |x −xB |+ |y − yB |
Which corresponds to the axis α of the points A and B :

Definition 4. Given two points A = (xA , y A),B = (xB , yB ) ∈ Z2 the axis α of A and B is the locus of the
points of the euclidian plane R2 which have the same distance from A and B:

α := {
(x, y) ∈R2 | |x −xA|+ |y − y A| = |x −xB |+ |y − yB |

}

The set L of the points of the city which have the same distance from the two points of interest is
given by the intersection of the solution set α of the equation of the axis and the plane Z2:

L =α∩Z2

If L is a non empty set, we define it as the integer axis of A and B , while if it is an empty set, we
define the axis α as an imaginary axis.

2.5.2 The different possible forms of the axis

Let’s consider the equation of the axis α of the points A(xA ; y A) and B(xB ; yB ) ∈R2

α : |x −xA|+ |y − y A| = |x −xB |+ |y − yB |
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All the different forms of the axis are summarized in the following table:

We can see that the form that the axis assumes depends on the difference between the abscissas
∆x = xA −xB and the difference between the ordinates ∆y = y A − yB .

An axis can be made of (7)

• one horizontal/vertical straight line if ∆x = 0 or if ∆y = 0;

• one diagonal segment and two half-lines if ∆x ̸=∆y and ∆x ̸= 0 and ∆y ̸= 0;

• one diagonal segment and two parts of the plane if ∆x =∆y ̸= 0

2.5.3 Splitting the city

Given a positive integer n ∈N0 of hospitals, how can we divide the city in areas so that each area has
only one hospital and the distance between each point of the area and the respective hospital is less
than that to any other hospital?

2.5.4 The n = 2 case

Let’s consider the specific case where we only have two hospitals in a 5×5 city, like the following:
where the two hospitals H1 and H2 have coordinates (2;4) and (4;1).

To draw a division of the city we have to find all the points of the euclidean plane which have the
same distance from the two hospitals, since that all the other points will have a lower distance from
one of the two hospitals and will be part of one of the areas.

To do that, we can equal the distance from one hospital of a generic point P (x; y) with the distance
of the point from the other hospital. The equation we will find corresponds to the equation of the axis
α of the points H1, H2.

d(P, H1) = d(P, H2) →|x −xH1 |+ |y − yH1 | = |x −xH2 |+ |y − yH2 | (2.6)

If we sketch the real solutions of the previous equation (2.6) on the Cartesian coordinate system
of the city we get the following curve:
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By drawing the points which have the same distance from the two hospitals, we have drawn the
division of the city and we can divide the city it in two areas limited by the axis itself.
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2.5.5 The case where n = 3

Let’s now consider the same city, with a third hospital H3 on the point (1;2):

To divide the city this time we have to add to the previous axis, the ones of the points H3, H1 and
H3, H2. To find the two new axes we have to build the two following equations:

d(P, H3) = d(P, H1) →|x −xH3 |+ |y − yH3 | = |x −xH1 |+ |y − yH1 |
d(P, H3) = d(P, H2) →|x −xH3 |+ |y − yH3 | = |x −xH2 |+ |y − yH2 |

If we sketch the real solutions of these two equations, we get the two following axes:

And if we add these axes to the previous one we get
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Since there are parts of the axes of the points, for example H1, H2, that get in the areas of the other
hospital, in this case H3, we have to remove those parts. To do that we have to remove all the points
P (xP ; yP ) of the axis of the points H1, H2 for which d(P, H3) < d(P, H1) = d(P, H2).

Now we can divide the city into three areas limited by the three axes.

2.5.6 The generic case with n ∈Z+

After analyzing the specific cases where n = 2 and n = 3, we can now consider the generic case of a
number n ∈Z+ of hospitals. To split the city we have to follow these steps:

• First we need to find all the possible couples of hospitals, without repeating them.

• After that we have to draw the axes of the points given by the couples of hospitals. The number
S of axes that we will have to draw is given by the following relation:

S = n(n −1)

2

• Last we have to remove the parts of the axes which invade the areas of other hospitals. In or-
der to do that we have to remove all the points P (xP ; yP ) of each axis whose distance from the
nearest hospital Hi is less than the distance of one of the points H j , Hk that generate the axis.

d(P, H j ) = d(P, Hk ) < d(P, Hi )
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2.6 Minimum number of hospitals to covering a given city

Given a l × l city and a maximum distance r ∈ Z+, what is the minimum number N of hospitals so
that the distance of every point from the nearest hospital is less or equal to r ?

To answer this question we can find the number of hospitals that we need to cover the area of the
city with circumferences with radius r and center in each hospital. We decided to analyze separately

the cases where r < 3

4
l and r Ê 3

4
l . We can easily prove that if r Ê l then N = 1 (8), so we can just study

the cases where r < 3

4
l and

3

4
l É r < l .

2.6.1 The case where
3

4
l É r < l

Let’s first consider the specific cases where
3

4
l É r < l .

As we can see, if we split the city into two rectangles with sizes l and
l

2
and put two hospitals in

the intersections of the diagonals of each rectangle, the distance of the hospitals from each vertex of

the rectangle is
3

4
l (9).

d(H1,D) = d(H2,C ) = 3

4
l

Since for r = 3

4
l then N = 2 and if r < l then N > 1, if

3

4
l É r < l the number N of hospitals is 2.
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2.6.2 The case where r < 3

4
l

Let’s now consider the case where r < 3

4
l . This time to cover the city we have chosen a pattern that

will be repeated to cover each city. Considering an unlimited city, the pattern we chose to cover the
area of the city is shown in Fig. 2.19.

Figure 2.19: The area is covered following the pattern shown in this example.

Definition 5. A column of hospitals is a set of hospitals which have the same abscissas.
Given a l×l city and a maximum distance r , with l ,r ∈Z+ a column of hospitals is an even/odd column
iff the the common abscissa of the hospitals xH is a non negative even/odd integer multiple of r +1:

xH = k(r +1), with k ∈Z+ even/odd

Let’s consider the case of an l × l city (Fig. 2.20), like the following:

Figure 2.20: l × l city

MATh.en.JEANS 2022-2023 Liceo “M. Casagrande”, Pieve di Soligo, Italy Page 31



First we have to calculate the number of hospitals of each column of the city (10). As we can see,
it is given by the ceiling quotient between the length l of the city and two times the diameter r of the
circumferences if the column is odd and by the ceiling quotient between l + r and 2r if the column is
even:

HO =
⌈

l

2r

⌉
(2.7)

HE =
⌈

l + r

2r

⌉
(2.8)

After that we have to find the number of columns needed to cover all the city (see Fig. 2.21).

Figure 2.21: Arranging columns to cover the city.
Red arrows show where to move the hospitals (represented by a red cross).

We can see that the number of odd columns is given by the ceiling quotient between l + r +1 and
2r +2 while the number of even columns is given by the ceiling quotient between l and 2r +2:

CO =
⌈

l + r +1

2r +2

⌉
(2.9)

CE =
⌈

l

2r +2

⌉
(2.10)

The total number of columns is now given by the sum of the odd and even number of columns (11).

C =CO +CE =
⌈

l + r +1

2r +2

⌉
+

⌈
l

2r +2

⌉
(2.11)

Since we have found the number of hospitals of each column and the total number of columns as a
function of the length l of the city and the maximum distance r , we can now calculate the total num-
ber of hospitals needed to cover the city by summing the number of hospitals of the even columns
times the number of even columns and the number of hospitals of the odd columns times the number
of odd columns:

NH = HO ·CO +HE ·CE
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To find a more general relation, although, we have to consider the cases where one hospital can
be omitted, like in the following examples:

We can consider separately the cases where the last column is odd or even and so the cases where
C is odd or even. In both the situations, the last hospital H2 can be removed if the sum of the distances
d(H1, A) and d(H1,B) between the hospital H1 of the second last column and the sides of the city is
less than or equal to the maximum distance r (12):

d(H1, A)+d(H1,B) É r → N = NH −1

C even

Let’s first consider the case where C is even.

As we can see, the distances d(H1, A) and d(H1,B) are given by the following relations:

d(H1, A) = l − (
(HO −1)2r + r

)= l − r (2HO −1)

d(H1,B) = l − (
(CO −1)(2r +2)

)= l −2(r +1)(CO −1)

and the relation that describes the number of hospitals will be the following:

N =
{

HOCO +HECE , if d(H1, A)+d(H1,B) > r

HOCO +HECE −1, if d(H1, A)+d(H1,B) É r

C odd

Let’s now consider the case where C is odd.
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In this situation the distances d(H1, A) and d(H1,B) are given by the following formulas:

d(H1, A) = l − (
(HE −1)2r

)= l −2r (HE −1)

d(H1,B) = l − (
(CE −1)(2r +2)+1

)= l − (r +1)(2CE −1)

The relation that describes the number of hospitals will be the same as the previous case.

N =
{

HO ·CO +HE ·CE , if d(H1, A)+d(H1,B) > r

HO ·CO +HE ·CE −1, if d(H1, A)+d(H1,B) É r

2.6.3 Generic case with r ∈Z+

We can now consider the generic case of an integer distance r ∈ Z+. The function that describes the
number of hospitals N needed to cover the city is given by the following equations: (13)

N (r, l ) =



1, if r Ê l

2, if
3

4
l É r < l⌈

l

2r

⌉⌈
l + r +1

2r +2

⌉
+

⌈
l

2r
+ 1

2

⌉⌈
l

2r +2

⌉
, if r < 3

4
l and k > r⌈

l

2r

⌉⌈
l + r +1

2r +2

⌉
+

⌈
l

2r
+ 1

2

⌉⌈
l

2r +2

⌉
−1, if r < 3

4
l and k É r

(2.12)

Where k is equal to

• 2l − r

(
2

⌈
l

2r

⌉
−1

)
−2(r +1)

(⌈
l + r +1

2r +2

⌉
−1

)
if C is even;

• 2l −2r

(⌈
l

2r
+ 1

2

⌉
−1

)
− (r +1)

(
2

⌈
l

2r +2

⌉
−1

)
if C is odd.

with C =
⌈

l + r +1

2r +2

⌉
+

⌈
l

2r +2

⌉
.

In the case where r < 3

4
l the actual minimum number N∗ of hospitals needed to cover the city is

not in general equal to the number N we just computed: in fact the pattern of hospitals we heuristi-
cally chose might not be the best possible way to cover the city. Despite that, N∗ surely lies between
our N as upper bound and a lower bound Ni n f given by the quotient between the area of the city and
the area of the circumference of each hospital.

Aci t y

Ahospi t al
= Ni n f < N∗ ≤ N
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Chapter 3

The grid as a metric space

So far we have considered only the intersections of the streets as points of interest. What happens if
we admit as of interest also any other point of the street?

3.1 Definitions

Definition 6. The plane is defined as (N×R+)∪ (R+×N); its elements are called points. The distance
function between A = (xA , y A) and B = (xB , yB ) is defined as: (14)

• If ⌊y A⌋ ̸= ⌊yB ⌋ and ⌊xA⌋ ̸= ⌊xB ⌋, or ⌊y A⌋ = ⌊yB ⌋ and ⌊xA⌋ = ⌊xB ⌋, then

d(A,B) = |∆x|+ |∆y | = |xA −xB |+ |y A − yB |
• If only ⌊y A⌋ = ⌊yB ⌋ then

– If {y A}+ {yB } É 1 then d(A,B) = |xA −xB |+ |y A −2⌊yB ⌋+ yB |
– If {y A}+ {yB } > 1 then d(A,B) = |xA −xB |+ |y A −2⌈yB ⌉+ yB |

• If only ⌊xA⌋ = ⌊xB ⌋ then

– If {xA}+ {xB } É 1 then d(A,B) = |xA −2⌊xB ⌋+xB |+ |y A − yB |
– If {xA}+ {xB } > 1 then d(A,B) = |xA −2⌈xB ⌉+xB |+ |y A − yB |

Although we want to capture the same idea as before, i.e. that the distance still coincides with
the length of the shortest path between A and B , the definition of the distance function gets more
complicated here. The problem is when the two points lie between two integers that differs by a unit
in either the abscissas or the ordinates: in this case it’s necessary to determine which one of the two
paths is the shortest. We are going to show the case where two points have the same integer part in
the ordinates, but the reasoning is the same for the abscissas.

Figure 3.1: Possible minimal paths between points with same integer part of ordinates.
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Since the horizontal segments of both paths are congruent, the length only depends on the sum
of the lengths of the vertical segments which are respectively represented by the sum of the fractional
part of the ordinates (for the blue one) and the sum of 1 minus the fractional part of the ordinates (for
the red one).

{y A}+ {yB }⋚ 1− {y A}+1− {yB }

{y A}+ {yB }⋚ 1

Once determined the shortest path it has the same length as the distance between one point and the
symmetric of the other one with respect to the line y = ⌊y A⌋ if the lower path is the shortest (blue one)
or y = ⌈y A⌉ if the upper path is the shortest (red one).

This function is a well-behaved metric function, in that it enjoys these four properties:

I) d(A,B) > 0 ⇔ A ̸= B

II) d(A,B) = 0 ⇔ A = B

III) d(A,B) = d(B , A)

IV) d(A,B) É d(A,C )+d(C ,B)

3.2 Differences with Z2

One of the implications of this new definition is the representation of some geometric loci.

3.2.1 Circumferences in (N×R+)∪ (R+×N)

The circumference, which is still defined as the locus of all and only the points equidistant from a
point called center, can now present a real number as both radius and one coordinate of the center.

Real coordinate for the center O

Figure 3.2: circumference with centre O

(
5

2
,2

)
and radius r = 2
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Real radius r

Figure 3.3: circumference with centre O(3,3) and radius r = 5

2
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Editing Notes

(1) What is most important in Dijkstra’s algorithm is to select inductively a list of nodes for which
it is certain that the current estimated distance is its minimum distance to the starting node in the
whole map. In the present version these are the first nodes, up to the one being examined.
At step k, the algorithm will have identified nodes 1 to k − 1 as such “good” nodes and updated
the distances of their neighbors, the list of nodes being ordered by non-decreasing distance. Then
node k may be added to good nodes, because we cannot exit the group of nodes 1 to k − 1 by a
shorter path than its current distance. Now, as the routes from nodes 1 to k −1 have already been
tested, we just need to update the distances for the neighbors of node k (also entering k as previous
node when a shorter distance is found) and to reorder the list of nodes.

(2) ∆x is the difference between the abscissas of two successive points of the line. It is equal to b if
a and b are coprime; here ∆x = 2.

(3) However, π cannot be replaced by 2 in other geometry formulas. For example, the area of the
disk calculated below is not equal to 2r 2.

(4) Of course, k has to be larger than the distance between the foci F1 and F2 – for the degenerate
case k = d(F1,F2), see the limiting case below. But there is also a constraint of parity: indeed,
|xP −xF1 |+|xP −xF2 | has the same parity as xF2 −xF1 and |yP −yF1 |+|yP −yF2 | has the same parity as
yF2 − yF1 , so k must have same parity as |xF2 − xF1 +|yF2 − yF1 | = d(F1,F 2). Otherwise, the “ellipse”
is empty (and the formula given for the perimeter is not valid).

(5) Here, k may not have the same parity as the distance between F1 and F2, but in this case there
is no point P with d(P,F1)+d(P,F2) = k and k must be replaced by k −1 in the calculation below
and in the result (the number of points beyond a focus to the nearest edges is actually the integer
part of

(
k −d(F1,F2)

)
/2).

(6) Same remark as (4) on the parity of k.

(7) We can add that the “axis” is empty if d(A,B) = |∆x|+|∆y | is odd. Indeed, |x−xB |−|x−xA| always
has the same parity as ∆x and |y−yB |−|y−y A| always has the same parity as ∆y , so d(P,B)−d(P, A)
has the same parity as d(A,B) = |∆x |+ |∆y |.
(8) Since l is the length of an edge and not the number of integer points on an edge (see the example
of a 5×5 city above), for any integer point P there exists a vertex of the square whose distance from
P is Ê 2⌈l/2⌉, that is l +1 in case when l is odd, and then we need a radius l +1 to cover the square
with a single circumference.

(9) It is not always possible to place hospitals at the centers of the rectangles, whose coordinates
are not necessarily integers. However, by choosing the closest points, it can be shown that this
distance is ≤ ⌈3l/4⌉.

(10) The columns are arranged as shown in Figure 2.21, where the abscissa of the left-hand edge of
the square is equal to 1, so that the first column is odd.

(11) This sum is equal to ⌈l/(r +1)⌉+1.

(12) This is only for the case where H1 is is above the lower edge of the square. If H1 is below or
on the edge, then H2 is above it and cannot be removed (while the following calculation yields the
opposite). This latter case occurs when the column of H1 is odd (⌈l/(r +1)⌉ odd) and the remainder
of the division of l by 2r lies between 1 and r , and when the column is even and the remainder of
the division of l by 2r is zero or lies between r and 2r −1.

(13) Actual conditions are slightly different from those given below, according to notes 8 and 12.

(14) Explanations are given after the definition, in the following text.
{x} = x −⌊x⌋ denotes the fractional part of a real number x.

MATh.en.JEANS 2022-2023 Liceo “M. Casagrande”, Pieve di Soligo, Italy Page 38


	Minimal Paths
	Counting the number of minimal paths
	Minimal path with weighted edges

	Urban planning issues
	The metric space Z2 with Manhattan distance
	Point-line distance
	Common geometric loci given the Manhattan distance
	Analysis of problem related to simple city planning situations
	Other questions related to urban planning and their relation to the concept of axis
	Minimum number of hospitals to covering a given city

	The grid as a metric space
	Definitions
	Differences with Z2

	Editing Notes

