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Abstract
Inspired  by  the  Game  of  Life,  created  by  John  Horton  Conway,  we  try  to  find  visually  and

mathematically interesting patterns formed by using different types of tiles and sets of rules. Not only we
deeply dive into understanding the figures that appear when the tiles have a hexagonal or a triangular
shape better, but we also focus on the 1D case, which gives rise to fractal patterns and the Sierpinski
triangle. Using the opportunity of creating our own rules of the Game and utilizing a computer program,
we managed to find out how interesting patterns behave on different types of tiles: some patterns are
static, some are oscillatory and some of them even glide.

1. INTRODUCTION
The mathematician John Horton Conway proposed the following game in 1970, called the Game of

Life: Consider an infinite grid of squares, which we call cells. Each cell can be in one of two states: alive or
dead. Every cell has 8 neighbours, which are the squares with which it shares at least a side or a vertex.
Every second, the following happen to all cells:

• Any living cell with fewer than two living neighbours dies, as if by underpopulation.

• Any living cell with two or three living neighbours lives on to the next generation.

• Any living cell with more than three living neighbours dies, as if by overpopulation.

• Any dead cell with exactly three living neighbours becomes a living cell, as if by reproduction.



Depending on the initial distribution of living cells, different interesting patterns emerge:
• Some patterns are stable, meaning they do not change at all e.g. a 2 x 2 block of cells.

• Some patterns oscillate, meaning that after a certain period of time they return to the original
pattern and repeat e.g. a 1 x 3 block of cells, which repeats with period 2.

• Some patterns called spaceships glide across the plane, meaning that after a certain period of time
the same pattern reappears but at a different position in the plane.

The choice of a square grid of cells is arbitrary. Different tilings of the plane could be used such as a
triangular tiling, hexagonal tiling, etc. The students’ research question would be to devise new rules for a
Game of Life on different types of tilings and explore what patterns emerge.

We begin our search for answers in section 2, in which we explain in a more detailed manner what
rules, cells and tilings represent.

Then, in section 3, we start to deeply analyse each type of tiling we find interesting, putting emphasis
on captivating mathematical methods as well  as giving examples of some beautiful patterns that we
were able to create. In section 3.1 we tackle the subject of a hexagonal grid, using and modifying the
computer program that we found, which led us to exploring the vast possibilities that appear in this
context.

After that, in section 3.2, we focus on better understanding and discovering interesting patterns that
occur when the tiles have a triangular shape. Even though, as cells, triangles have more neighbours than
squares or hexagons, it was a pleasure for us to examine and discover rules that lead to unique patterns.

In the last part of our presentation, section 3.3, we dive into the case in which Game of Life functions
in just one dimension (1D), following with a thorough explanation of the Sierpiński Triangle.

2. TILINGS AND RULES
The Game of Life consists of a grid made out of cells that are in one of two states, either alive or

dead. The way it is determined if a cell becomes alive or dead depends on the initial configuration that
the user himself sets and the rule he chooses.

A rule is an algorithm that determines the change in the state of the cell (spawns, survives, remains
dead, dies) based on the number of living neighbours that the cell has.

In table 1, we shall explain the mechanism behind the basic rule for squares: a living cell survives if it
has either  2 or  3 living neighbours, while a dead cell is born only if it has exactly  3 living neighbours,
otherwise nothing changes.

The geometrical shape of each cell can vary, influencing its number of neighbours. Therefore, the
Game of Life behaves differently on different tilings of the plane. The only restrictions are that there
must be no gaps on the ‘board’. Knowing these concepts, we can easily distinguish  2 types of tilings:
regular and irregular ones.
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For a living cell For a dead cell

# living neighbours Resulting state # living neighbours Resulting state

0 Dead 0 Dead

1 Dead 1 Dead

2 Alive 2 Dead

3 Alive 3 Alive

4 Dead 4 Dead

5 Dead 5 Dead

6 Dead 6 Dead

7 Dead 7 Dead

8 Dead 8 Dead

Table 1 Cell state variation in the original Game of Life

A regular tiling is only made out of the same regular shape having the same size across the board,
while an irregular tiling contains  2 or more geometrical shapes or the same shape with different sizes
(1). The next example in figure 1 is of a famous irregular tiling, the Penrose tiling.

Figure 1 The Penrose Tiling1

One of our first tasks was to get familiar with the different geometrical shapes that a regular tiling
can have. As we shall prove below, there are only 3 possible regular tilings of the plane.

The first one is the square, which is the most popular and researched one, thus also being the one
which  gave  us  the  least  things  to  discover.  As  you  can  see,  the  square  has  8 neighbours  and  its
arrangement on the 'board' is the simplest out of the other shapes.  

1 The Penrose Tiling, https://en.wikipedia.org/wiki/Penrose_tiling 
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Figure 2 A square and its neighbours

The second one is the hexagon. It is the one with the least neighbours,  6, and also not nearly as
researched as the square, which makes it a great candidate for our experiments.

Figure 3 A hexagon and its neighbours

The third one is the triangle, which has the most neighbours, 12, so it's the most complex, leading to
very chaotic configurations and motion.

Figure 4 A triangle and its neighbours
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We now prove that these are all of the possible regular polygons that can fill our ‘board’ without
gaps.

Proof. Each angle of a regular n-gon has (n−2)⋅180
n

 degrees, by the well-known formula. Let’s assume

that at each vertex,  k n-gons meet (this number must be constant since the n-gons are regular). Then,
the value of k is 

360
(n−2)⋅180

n

=
2n

n−2
,

which must be an integer. We get that n – 2 divides 2n. Since we know it divides 2n - 4, we get that it is a
divisor of 4, which can be either 1, 2, or 4. Therefore, n can only have one of the values 3, 4 or 6. 

3. DISCUSSION OF DIFFERENT RULES ON DIFFERENT TILINGS

 3.1. Game of Life on hexagons

We begin our discussion of the behaviour of various rules on different tilings with the hexagonal
tiling.

Given the fact that working with hexagons on paper is not the easiest of tasks, we have immediately
tried to find a solution to switch our work to a computer, where we can save time and effort. After a bit
of research, we have managed to find the site https://arunarjunakani.github.io/HexagonalGameOfLife/  .  

We really have to give a lot of credit to this site as it made our work much more precise and faster.
With just a simple click of a button, we could analyse an entire case.

Then, we realized that the site only offered us one rule to work with, which was obviously too little
for us. So, our next dilemma was how to change the rules from the site, as it was clear that trying to
make a similar site would be quite impossible with our coding knowledge.

Even though it took quite a while to work out how to do it, once we mastered that, it became a piece
of cake to change to other rules. Our procedure was the following:

After downloading the code, we would open the file that allows us to change the rules. This file is
separated from the animations, so it is really accessible to alter it (2). The complexity of the code helps
us switch to different rules within seconds, as we need to change just some numbers and not the whole
structure. For example, we present in figure 5 the change in the code from the rule on the site to the rule
Survive  3,  4 -  Spawn  2,  3.  We have used here concise notation to describe rules, which is explained
below.
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Figure 5 Change in the code for hexagons

An interesting initial question was to count the total number of possible rules on the hexagonal tiling,
to see whether we had any chance to analyse them all. In order to do this, we have used the fact there
exists a bijection between each possible rule for how many neighbours a cell needs to survive and each
subset of the set {0, 1, 2,…,6}. If a number is in the subset, then a cell with that exact number of living
neighbours survives. For any other number of neighbours, it dies. Similarly goes for the number of rules
that dictate whether a dead cell comes to life. Therefore, for each part, there are 27 possible choices. In
total, the hexagonal Game of Life can have one of 214 = 16384 rules – too many to analyse them all. 

We can now discuss complementary rules. For a subset A of a set M, let the complementary of A be
A’ be the subset M ∖ A. For a rule R1 Spawn A, Survive B, let the rule Spawn B’, Survive A’ be called the
complement of R1. These rules have the property that they generate identical behaviours if they are
applied to complementary colourings of the tiling (each dead cell becomes alive, and each living cell
becomes dead). The only rules that do not have a complement are the ones for which  A’= B, as they
become equivalent.  For  each subset  A there  is  exactly  one rule  identical  with its  complement  with
Spawn A. Therefore, the number of rules identical to their complement is equal to the number of subsets

of  {0, 1, 2, …, 6} and is equal to  27. Therefore, there are only  214−27

2
+27

= 213
−26

+27
=8256 if we

consider complementary rules to be in fact equal.

Furthermore, we consider that, by Conway’s original motivation for the game, a rule only makes
sense if both the subset that determines the Spawn and Survive rules are continuous i.e. if a < b < c and
a and c are in the subset then b must be in the subset. The number of continuous 1-element subsets of
{0, 1, 2, …, 6} is 7. Similarly, there are 6 2-element continuous subsets, 5 3-element subsets and, so on,
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if(this.isAlive) {

if(living < 2 || living > 2) {

this.shouldSwap = true;

}

else {

if (living == 2) {

        this.shouldSwap = true;

}

if(this.isAlive) {

if(living < 3 || living > 4) {

this.shouldSwap = true;

}

else {

if (living == 3 || living == 2) {

        this.shouldSwap = true;

}



1 7-element subset. The total is  1+⋯+2+⋯+7 =
7⋅8
2

= 28.   In total, there are  282 = 784 continuous

rules, which is a significant reduction, but still too many to analyse.

Now we are going to move on to the proper analysis of two specific rules, which we have picked
since they exhibit different behaviours.

Our first idea for characterising the behaviour of different rules was to make a list of the simple
shapes, made up by either 1, 2, 3, or 4 connected hexagons and analyse their behaviour. If a majority of
these shapes had similar behaviour, then we could infer that the rule had a tendency to generate that
type of behaviour e.g. periodic or stable shapes.

These simple shapes are called monominoes, dominoes, triominoes and tetrominoes. Together, we
will refer to them as polyominoes. We have listed them below:

1.  2.  3.  4.   5. 

6.  7.  8.  9.  10. 

11.  12. 
Figure 6 The simple hexagonal shapes

The shapes above are all such simple shapes up to reflections and rotations.  During our work we
have used the fact that neither reflections nor rotations influence the behaviour of the shapes because
the rules only depend on the immediate neighbours (3), not the orientation of the pattern. Symmetric
configurations can lead to aesthetically pleasing or harmonious patterns, but the fundamental dynamics
are still determined by the local interactions of cells in the grid.

Another way of characterising the behaviour of a rule is by generating random initial shapes, letting
the game run, and observing what patterns emerge. On the site there is a button that gives all cells one
of the two states with a certain probability. Playing the Game of Life, with time, shapes initially formed
either disappear, stabilize or become periodical, thus showing the trend of the rule. For example, if a rule
has many periodical shapes, we shall call it a periodical rule.

The first rule that we analysed states that: 

 For a cell to be spawned, it needs to have exactly three living neighbours;

 For a living cell to stay alive, it needs to have two or three living neighbours.
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It is important to be stated that most of the shapes with interesting properties that we found for this
rule are stable and only a small part of them are periodic. We have found around 40 different shapes
with interesting properties and at least  30 of them are stable.  Thus, this first rule can be considered a
stable rule. Using the randomisation technique explained above also confirms this behaviour.

This is somewhat reflected by the polyominoes above. The only ones with interesting properties are
numbers 3 and 9 from figure 6, which are stable, and 10, which is 2-step periodic (4).

Figure 7 presents some of the most interesting configurations we discovered. It particularly highlights
how one can easily find large stable configurations for this rule. 

Figure 7 Stable shapes in hexagonal rule 1

The second rule that we analysed states that:

 For a cell to be spawned, it needs to have two or three living neighbours;

 For a living cell to stay alive, it needs to have three or four living neighbours.

Contrary to the first rule, most of the shapes that we found are periodic and only a few of them are
stable.  This  is  again confirmed by the randomisation technique.  Thus,  this  rule can be considered  a
periodic. 

This is also reflected amongst the polyominoes, as number 8 from figure 6 is  4-step periodic, while
numbers 2, 3 and 10 are all 2-step periodic (5).

Below we highlight some interesting periodic configurations. The highest period that we have found
for a shape is 16 for the following initial configuration:

Figure 8 The initial configuration of a 16-step periodic shape

Figure 9 A 5-step periodic shape in hexagonal rule 2
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Thus, these two rules which we have discussed are a great example of how different rules can make
it harder or easier to find shapes with certain behaviour.

 3.2. Game of Life on triangles

The original Game of Life is played on a tiling of the plane using squares and has been studied by
many. After having analysed the Game of Life on a hexagonal tile of the plane, we shall now move on to
the only regular tiling left, as we have already proved, the one using equilateral triangles.

On such a tiling, each cell has 3 neighbours that share a side (the blue ones in figure 12) and 9 that
share a vertex (the red ones in figure  12). Because in Conway’s original game, a neighbour was a cell
sharing either a side or a vertex, we shall consider each triangle has exactly  12 neighbours. Having so
many neighbours, especially compared to the hexagons, this suggests that the Game of Life is much
more vivid on a triangular tiling if an appropriate set of rules is chosen. But how many possible rules are
there? This is the following part of our analysis. 

Figure 12 The neighbours in a triangular tiling
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Figure 11 A 2-step periodic shape in hexagonal rule 2

Figure 10 A 2-step periodic shape in hexagonal rule 2



In what regards the number of possible rules, we will use a method analogous to the one used for
hexagons. We do similar calculations, but the set used is {0, 1, 2, …, 12}. We easily get that there are 226

rules, out of which 213 are identical to their complement. The final result is

226
−213

2
+ 213

= 225
−212

+213
=33,558,528.

For counting continuous rules, we proceed just like we did for hexagons. The number of continuous
subsets is 13⋅14

2
= 91 , and the resulting total of continuous rules is 912 = 8281. 

We started out our analysis, just like we did for the hexagonal Game of Life, discovering the basic
shapes,  namely  the connected monomino, dominoes and triominoes,  which we shall  present in the
following figure. 

Figure 13 Simple shapes on a triangular tiling

From here, we can see that in a triangular tiling of the plane, there is one possible monomino,  3
possible dominoes, and 11 possible triominoes. We have ignored the shapes that can be obtained from
the ones in the figure by either  reflections, rotations or both, because they will  obviously generate
similar behaviours, only with a different orientation.

We have quickly realized that analysing multiple rules manually, on paper, would take a very long
time and would imply a great risk of making mistakes. So, it was not feasible. Therefore, we started
looking  for  a  code  similar  to  the  one  used  for  hexagons.  We have  come across  a  YouTube  video 2

presenting some gliders in “Triangular Conway’s Game of Life”, as the video was called. Checking the
comments, we discovered someone with our exact question: is there a code for it we can use? Gladly,
the answer was yes.

The writer of the code, Chase Marangu, had made an editable version3 on openprocessing.org. The
code made our work much easier and we have to give credit to the writer. With the aid of the code, we
could now analyse different shapes very quickly. We used the same rule as the writer himself: a living cell
only survives if it has either 4, 5 or 6 neighbours, while a dead cell is born when it has either 4 or 8 living
neighbours (6). 

2 https://www.youtube.com/watch?v=VOQrDh6AvYQ
3 https://openprocessing.org/sketch/806868
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After checking the 15 shapes in Figure 13, we discovered they all “die” after just a few steps (no living
cells are left). Of course, this is obvious since they all are made up of fewer than 4 cells so no cell can
have 4 living neighbours to remain or become alive.

In our search of shapes that are either stable, periodic or gliding, we have used a very important
characteristic of all of them: if you let the game run on them, they never disappear and can be easily
observed. Therefore, we tried using the “random” function of the code. After randomizing a colouring of
the plane (each cell is coloured with a certain fixed probability), we let the game run. After it sorts out,
we are left with shapes of the three types we are looking for. Although this method doesn’t give many
results  and lots of them repeat quite often, it  works and it  helped us find the following interesting
shapes, including a gliding shape.

Figure 14 2-step periodic shape

Figure 15 2-step periodic shape

Figure 16 A stable shape

Figure 17 3-step glider

3.3. Game of Life in one dimension

Up until this point of our presentation, we have analysed the Game of Life in two dimensions. In 2D it
was very difficult to analyse the cell’s evolution exactly. Now, if we take a step higher and play the Game
of Life in three dimensions, we will probably lose any control we have left. However, if we go down to a
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single dimension, we can easily go through multiple stages of the game. In some cases, we can even find
the actual pattern.

The first major advantage of being in a single dimension is that every cell can have no more than two
neighbours. That is because all of our tilings are represented on a straight line. This obviously limits the
number of rules we can have. 

We did not know exactly where to start, but in this situation, we had the possibility to briefly analyse
almost every single rule so that we find something interesting. At first, we chose the rule where a cell is
born if  it  has two living neighbours  and stays  alive if  it  has,  again,  two living neighbours.  We  have
managed to analyse and understand a significant part of its behaviour, which can be observed in the
following examples. But first, let us explain to you what an example actually represents. 

This is the first row of our example. Here we have our starting configuration of cells on the line that
are going to evolve. 

After the first step, our figure will look like this:

Now, this might look as if the evolution of the cells happened in a two-dimensional environment, but
that is definitely not the case. The rows are just stacked and each of them represents a different stage of
the evolution. The evolution ends just before the stage when there are no cells left. So, the final result is
the following image:

As you can see here, we started with cells that have no space between them. This is a rule that does
not allow new cells that easily and the number of cells decreases constantly. In each cycle, the number of
cells goes down by 2. Here we had an odd number of starting cells, so the evolution stops at 1 cell.
However, if we would have an even number of cells, we would end up with two adjacent cells that will
then both disappear.
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In the second example, we started with cells separated by one space. This is an extremely important
situation, given the properties of the rule, with this being the only time two living cells can create a new
cell. Here, the rule behaves a little bit different. The number of cells decreases just by one, each pair of
cells giving life to another. 

Now, let’s move on to some irregular first row arrangements. We’ve previously had regular starting
shapes, and there are high chances we can see a pattern in their evolution. Irregular shapes are a bit
more unpredictable and therefore can give us a better understanding of the rule.

Now, these further examples help us in generalizing the behaviour of our rule. Firstly, let us denote a
dead cell with 0, a single living cell with 1, and the number of living cells in a continuous string with n. For
cell arrangements that can be written as n1 ,0 ,n2 ,0 ,n3 ,0 ,…,0 ,nk  with ni ≥ 3,  the next stage will look
like this:

(n1−2), 0 ,1 ,0 ,(n2−2),0 ,1 ,0 ,(n3−2),0 ,1 ,0 ,… ,0 ,1 , 0 , (nk−2)

If none of the cell strings hit a number lower than 3, then the next stage can be written as 

(n1−4),0 ,1 ,0 ,(n2−4),0 ,1 ,0 ,(n3−4),0 ,1 ,0 ,…,0 ,1 ,0 ,(nk−4)

and so on.

If some ni is below 3, there aren’t major changes, but they still need to be mentioned:

If  ni= 2 we replace the 1 ,0 ,(ni−2),0 ,1  block in the representation above with a  1, 0, 0, 1 block.
After that, the cells to the left of the block will never interact with the cells to the right of the block so we
can split our analysis to the two separate groups and continue as before. See step 2 in the first irregular
example above to see an example of this. 

If  ni= 1 we replace the  0 ,1 ,0 ,(ni−2),0 ,1 ,0  block in the representation above with a  0, 1, 0, 1, 0
block. We can analogously deal with the situation when these blocks appear on the edges. 

However, even now this still looks as if the generalization does not cover every path, since we are
just defining a particular case. However, if we would have cells separated by more than one space, we
would still get to the situations shown in the examples. So, if we have a cell arrangement that can be
written as n1 ,m1 ,n2 ,m2 ,… ,nk−1 ,mk−1 ,nk  with each mi representing the number of dead cells in a row,
and some mj > 1, then we can split this string into two, the one to the left of mj and the one to the right
of mj and analyse these separately using the method above. There will be no interactions between these

MATh.en.JEANS 2023 – 2024 Colegiul Naţional “Costache Negruzzi”, Iaşi page 13



two strings. That is because the cells disappear starting from the margins and ending in the center of the
string so, during the next stages, there will never be situations where two cells reach a gap of just one
space to be able to interact.

Now we move on to a different rule. We will present the rule where cells are born when they have
one living neighbour and a living cell dies no matter how many living neighbours it has. 

We have to talk a bit about fractals, since this is exactly what are we going to find here when we start
with one cell.  So,  what  are they? The simplest  explanation is  the following:  a  fractal  is  a  rough or
fragmented geometrical shape that can be split into parts, each of which is (at least approximately) a
reduced-sized copy of the whole.

Here is what we can observe when we stack together the rows that show us how the cells evolve if
we start with a single living cell: 

Figure 18 The evolution after four steps

Figure 19 The evolution after 32 steps

Figure 20 The evolution after 256 steps. The fractal shape is really evident now.

The shape in figure  18 is the main shape that is repeating. As you can see in the next stages, we
obtain a larger and larger triangle, the process continuing infinitely. As we can observe, from step 256
onwards the triangle is very similar to Sierpiński’s Triangle, which is a remarkable property.

In the final part of this section we discuss the Sierpiński Triangle and some of its properties. 
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The Sierpiński Triangle is a fascinating mathematical construction named after Wacław Sierpiński (14
March 1882 – 21 October 1969). He is a prominent Polish mathematician known for his contributions to
set theory, number theory, and topology.

Let’s delve into the mechanism behind the formation of the Sierpinski Triangle. We begin with an
equilateral triangle. We then divide it into  4 smaller equilateral triangles with half the side length and
remove the middle triangle. Thus, three identical triangles appear. We can now repeat this process for
each of these  3 triangles,  obtaining  9 even smaller  triangles. We then repeat the process for these
triangles and so on to infinity.  This  recursive process creates countless patterns of smaller  triangles
within a larger framework, contributing to the Sierpiński Triangle's captivating beauty.

Figure 21 The Sierpiński triangle at stage 0

Figure 22 The Sierpiński triangle after step 3

Figure 23 The Sierpiński triangle after step 5

As can be observed, this pattern becomes more and more similar to the one obtained above for the
evolution of  the  one-dimensional  rule.  To  make  this  more  precise,  note  that  (up  to  rescaling)  the
equilateral triangle in figure 21 is repeated the same number of times and in the same arrangement in
the Sierpiński triangle after step n as the pixelated triangle of figure 18 is in the evolution after 2n+2 steps
of the one-dimensional rule (7).

One particularly interesting property of the Sierpiński triangle is that its area is 0 while its perimeter
is infinite. To see why, let n be the number of steps that have gone by. Then, the total perimeter of the 3n

triangles at this stage is  L⋅3⋅( 3
2 )n  and the total area of these triangles is  L2

⋅
√3
4
⋅( 3

4 )n  where L is the

side length of the initial triangle. Because the process never ends, n tends to infinity. This means that the
perimeter tends to infinity, because 3

2
>1 , while the area tends to 0, because 3

4
< 1.
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4. CONCLUSION
To sum up, our investigation into the Game of Life on hexagons and triangles has been a rewarding

journey into the world of mathematical patterns. By analysing different rules,  we navigated through
stable, oscillating, and gliding patterns, revealing the dynamic nature of different rules. We also looked
into the one-dimensional  Game of Life and found some interesting results,  including structures that
resembled fractals. The range of findings demonstrates the complexity and diversity of cell behaviour on
different geometric shapes. Overall, our research adds to our understanding of mathematical patterns
while demonstrating the Game of Life's adaptability to various tilings.

   EDITING NOTES

(1) This definition of  regular tiling is very restrictive.  One could also say that all  periodic tilings are
regular, and even the Penrose tiling is regular in a certain sense.

(2) The  code  can  be  found  at  https://github.com/arunarjunakani/HexagonalGameOfLife.  You  can
download it  (index, scripts and css files) and run it  on your computer. The lines to be modified to
change the rule are in the file src.js.

(3) More precisely: because the rules only depend on the number of living immediate neighbours.

(4) In addition, polymino 6 in Figure 6 becomes polymino 3, both polyminoes 7 and 12 become polymino
9, and all three remain stable thereafter.

(5) In fact, except the first, all the polyminoes in figure 6 give periodic configurations.

(6) As the rule is unchanged, there is no need to edit the code. The examples of shapes given below can
be tested directly on the interactive site indicated in footnote 3. Other interesting examples are shown
in the video.

(7) We suggest the reader to provide a proof of this observation. It follows that, by first changing the
scale on one of the axes to get equilateral triangles and then renormalizing at each step, the living cells
at step 2n correspond exactly to the upper vertices of the triangles at step n of Sierpiński's construction,
and so the Sierpiński triangle then appears as the limit figure.
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