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Abstract: 

Our research deals with finding the minimum length of a cobweb that Spider Webster should build in 
order to connect multiple points of interest. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MATh.en.JEANS 2022-2023 Colegiul National “Costache Negruzzi”, Iași page 2 

 
 

The problem 
 
Spider Webster is fed up of investing resources and energy in building new cobwebs every day, and wants 
to be more pragmatic when building its cobweb. Webster wants to build a cobweb of minimum total 
length, which connects the four points of interest to it. These four points are the vertices of a rectangle. 
Because its Mathematics it is so dusty, it expects some help from you.  

 
You can also investigate the case when the four points are the vertices of a parallelogram. 
What if Webster has now five points of interest, which are the vertices of a regular pyramid. Can you help 
it build the cobweb of shortest length between these points? 
 

Solution of the problem 
 
We shall prove that, in the case of a rectangular shape, the minimum cobweb length is obtained when 
the spider constructs two specific nodes inside the rectangle. Firstly, we shall find the position of these 
nodes inside the rectangle, and then calculate the shortest length of the cobweb.   

In order to find the minimum cobweb length for a rectangle, we shall split the rectangular shape into 
triangles, and then look for the minimum length for some of them.  
Therefore, we also need to consider the problem of finding the shortest cobweb length that Webster can 
build inside a triangular shape. 
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The case of a triangular shape 
 

Let 𝐴𝐵𝐶 be a scalene triangle, with angles less than 120°. We aim to find the point 𝑃 in the plane of  
∆𝐴𝐵𝐶  such that the sum 𝐴𝑃 +  𝐵𝑃 +  𝐶𝑃 is minimum. In literature, the point 𝑃 is known as the 

Fermat–Torricelli point, or the Fermat point.  

 
 

Figure 1.   A scalene triangle ∆𝐴𝐵𝐶. (1) 
 

We begin the construction as follows. As drawn in Figure 2, we construct the equilateral triangles 𝐴’𝐵𝐶,
AB’C and 𝐴𝐵𝐶’ outside the sides of the given triangle 𝐴𝐵𝐶. Then, we draw the segments from 𝐴’ to 𝐴, 𝐵’ 
to 𝐵, and 𝐶’ to 𝐶. Our first claim is:  
 
Proposition 1. The segments 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ have all the same length, and any two of these segments meet 
at an angle of 120°. 
 
Proof.  Let 𝑃 be the intersection point of segments 𝐵𝐵’ and 𝐶𝐶’. We firstly prove that 𝐵𝐵’ and 𝐶𝐶’ have 
the same length and the angle 𝐵’𝑃𝐶’ has 120°. 
  
We can easily see that the triangle 𝐶’𝐴𝐶 is obtained from the triangle 𝐵𝐴𝐵’ by a rotation of 60° about 
the fixed point A. This means that the triangles 𝐶’𝐴𝐶 and 𝐵𝐴𝐵’ are congruent and the angle 𝐵’𝑃𝐶 has 
60°. Consequently, the angle 𝐵’𝑃𝐶’ has 120°.                      
Similarly for 𝐴𝐴’ and 𝐵𝐵’, and for 𝐴𝐴’ and 𝐶𝐶’. Thus, 𝐴𝐴’ =  𝐵𝐵’ =  𝐶𝐶’ and any two of these segments 
meet at an angle of 120°.  ■ 
 
Note that, at this point, we do not know whether all three segments have the same intersection point.      

 

 

Figure 2.  The construction of the Fermat point of ∆𝐴𝐵𝐶. 



MATh.en.JEANS 2022-2023 Colegiul National “Costache Negruzzi”, Iași page 4 

 

Proposition 2. The circumcircles of the equilateral triangles ∆𝐴𝐵𝐶', ∆𝐴𝐵′𝐶 and ∆𝐴’𝐵𝐶 intersect at point 
𝑃. 

 
 

Figure 3.  The intersection of the circumcircles is the Fermat point of ∆𝐴𝐵𝐶. 
 

Proof.  From the fact that 𝐵𝐴𝐶′̂ =  𝐵𝑃𝐶′̂ = 60°, we deduce that the quadrilateral 𝐴𝑃𝐵𝐶’ is cyclic, and 

thus the point 𝑃 lies on the circumcircle of ∆𝐴𝐵𝐶'. Similarly, as 𝐵′𝐴𝐶̂ =  𝐵′𝑃𝐶̂ = 60°, we deduce that the 
quadrilateral 𝐴𝐵′𝐶𝑃 is cyclic, and thus the point 𝑃 lies also on the circumcircle of ∆𝐴𝐵′𝐶.  For the 
moment, we know that 𝑃 is one of the intersection points between the circumcircles of ∆𝐴𝐵𝐶' and 

∆𝐴𝐵′𝐶. However, as 𝐵𝑃𝐶̂ = 120°, and 𝐵𝐴′𝐶̂= 60°,we get that these are supplementary angles in the 
quadrilateral 𝐴′𝐵𝑃𝐶,  thus this quadrilateral is cyclic. In conclusion, the point 𝑃  lies also on the 
circumcircle of ∆𝐴′𝐵𝐶. Therefore, the point 𝑃 is the intersection of the circumcircles to the equilateral 

triangles ∆𝐴𝐵𝐶', ∆𝐴𝐵′𝐶 and ∆𝐴’𝐵𝐶 (see Figure 3). ■ 
                                   

Theorem 1. The point of intersection of the segments 𝐴𝐴’, 𝐵𝐵’ and 𝐶𝐶’ is the Fermat point of ∆𝐴𝐵𝐶, 
which means that 𝐴𝑃 +  𝐵𝑃 +  𝐶𝑃 is minimum. 
 

Proof.  We know that the point 𝑃 is the intersection point of segments 𝐵𝐵’ and 𝐶𝐶’, and we have proved 
that P is also the intersection of the circumcircles to the equilateral triangles ∆𝐴𝐵𝐶', ∆𝐴𝐵′𝐶 and ∆𝐴’𝐵𝐶. 
We shall prove that 𝑃 lies also on 𝐴𝐴′.   
Let us say that 𝑄 is the intersection of 𝐴𝐴′ and 𝐵𝐵′. Then, using the previous two propositions, we could 
prove that 𝑄 is the concurrence point of the three circumcircles to the equilateral triangles ∆𝐴𝐵𝐶', 

∆𝐴𝐵′𝐶 and ∆𝐴’𝐵𝐶.  But this means 𝑃 =  𝑄, and thus 𝑃 lies on 𝐴𝐴′ as well. (2)  ■ 

Remark. If the triangle 𝐴𝐵𝐶 has an obtuse angle equal to or larger than 120°, then the Fermat point lies 
at the vertex with the angle of 120° degrees or larger. 
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The case of a rectangular shape 
 

From the beginning we were thinking of a diagonal traversal of the 4 points of interest (as in Figure 4), 
because, as Pythagoras said, "the shortest path is the straight line that holds them together". 
 

 
 

Figure 4. First attempt to find a solution 

 

However, we didn't think that the problem was so simple, so we tried several options and noticed that 
there are shorter ways to join all four points, and the most advantageous one is shown in Figure 5. 
 

 
 

Figure 5. Second attempt to find a solution 
  

We are now ready to proceed in finding the shortest path length between the four vertices of a 
rectangle.  
 

Proposition 3.  If Webster decides to have only one node (point of intersection) inside the rectangle, 
then the minimum cobweb length is the sum of diagonals.  
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Figure 6.  Only one point inside the rectangle 
 

Proof.  Let 𝑃 the intersection of diagonals of the rectangle, as drawn in Figure 6. If we suppose that the 
node inside the rectangle is different from 𝑃, say 𝑄, then, by the triangle inequality, we have: 
 

𝐴𝑄 +  𝐶𝑄 >  𝐴𝐶 
and 

𝐵𝑄 +  𝐷𝑄 >  𝐵𝐷. 
 
By adding these two inequalities, we get that 
 

𝐴𝑄 +  𝐵𝑄 +  𝐶𝑄 +  𝐷𝑄 >  𝐴𝐶 + 𝐵𝐷. 
Thus, the sum of diagonals minimizes the sum of distances from an interior point of the rectangle to its 
vertices.     ■ 
 
We suppose now that there are more than one node inside the rectangle (see Figure 7).  
 

 
 

Figure 7.  Two nodes inside the rectangle 
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Proposition 4.  If there are two nodes inside the rectangular room, then the minimum cobweb length 
that Webster can construct passing through these two points will be less than the sum of diagonals.  
 

Proof.  Without losing the generality, assume that 𝐴𝐸𝐷 ̂ < 90°. Otherwise, we consider the angle 𝐴𝐸𝐵 ̂. 

Since both angles 𝐴𝐸𝐷 ̂  and  𝐵𝐸𝐶 ̂ are smaller than 120°, one can always find the Fermat points 𝑃 and 𝑄 
for the triangles 𝐴𝐸𝐷 and 𝐵𝐸𝐶. This means that 

𝐴𝑃 +  𝐷𝑃 +  𝐸𝑃 <  𝐴𝐸 +  𝐷𝐸 
and 

𝐵𝑄 +  𝐶𝑄 +  𝐸𝑄 <  𝐵𝐸 +  𝐶𝐸. 

By adding these two inequalities, we get that 

𝐴𝑃 +  𝐷𝑃 +  𝐵𝑄 +  𝐶𝑄 +  𝑃𝑄 <  𝐴𝐸 + 𝐵𝐸 +  𝐶𝐸 +  𝐷𝐸 =  𝐴𝐶 +  𝐵𝐷. 

Note that, for the time being, the points 𝑃, 𝐸 and 𝑄 are not necessarily collinear (3). However, if we 
suppose that they are not collinear, then, in the triangle 𝑃𝐸𝑄, we shall write the triangle inequality: 

𝑃𝑄  <  𝑃𝐸 +  𝑄𝐸, 

and the cobweb length will be even larger. Therefore, the points 𝑃, 𝐸 and 𝑄 must be collinear, in order to 
guarantee the minimum length of the cobweb.      
Thus, the minimum cobweb that Webster can construct passing through these two points will be even 
less than the sum of diagonals.                                                             ■ 
 

Proposition 5.  If there are 𝑛 ≥  2 nodes inside the rectangular room, then the minimum cobweb 
length that Webster can construct passing through these𝑛points will be minimized for 𝑛 = 2.  
 

 
 

Figure 8.  Three nodes inside the rectangle 
 

Proof.  Let us suppose that 𝑃, 𝑄 and 𝑅 are three inside nodes, as in Figure 8. We can easily see that, in 
order to minimize the total cobweb length, we can disregard the point 𝑅 and consider a path that goes 
only through the nodes 𝑃 and 𝑄 (the dotted line). Indeed, by the triangle inequality in ∆𝐴’𝐵𝐶, we have 
that 𝐴𝑃 <  𝐴𝑅 +  𝑃𝑅.   
Similar arguments will hold if we have more that three nodes inside the rectangular, by ignoring the extra 
point.    ■ 
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Theorem 2. In any given rectangle 𝐴𝐵𝐶𝐷, the total cobweb length is minimized when the two points 𝑃 
and 𝑄 are located in such a way that both are on segment which connects the two mid-points of the 
shorter sides of the rectangular (see Figure 9). 
 

 
Figure 9.  Optimal positions of 𝑃 and 𝑄 inside the rectangle 

 
Proof.  Suppose that 𝐴𝐵 >  𝐴𝐷. Denote by 𝐸 and 𝐹 the two mid-points of the shorter sides of the 
rectangular.  
For the moment, let us suppose that the node 𝑄 is fixed inside the rectangle, which means that the sum 
𝐵𝑄 +  𝐶𝑄 is also fixed. If the point 𝑃 is variable inside the rectangle, such that the sum 𝐴𝑃 +  𝐷𝑃 
remains fixed (4), then the minimum cobweb length is obtained when the length of 𝑃𝑄 is minimum. We 
must search for the position of node 𝑃 that minimizes 𝑃𝑄, with 𝑄 fixed and 𝐴𝑃 +  𝐷𝑃 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛t (see 
Figure 10). 

 

 
Figure 10.  Optimal positions of 𝑃 inside the rectangle for fixed 𝑄 

If we want to minimize 𝑃𝑄, then the distance from 𝑃 to the side 𝐴𝐷 must be maximum (5).  
We claim that the optimal position of point 𝑃  (such that 𝐴𝑃 +  𝐷𝑃 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑑(𝑃, 𝐴𝐷)  =
 𝑚𝑎𝑥𝑖𝑚𝑢𝑚) is obtained when the triangle 𝐴𝑃𝐷 is isosceles. Indeed, if the perimeter of a triangle is given 
(here, 𝐴𝑃 +  𝑃𝐷 + 𝐴𝐷) and 𝐴𝐷 is fixed, then the triangle that has the maximum area (and, thus, the 
maximum height from 𝑃) is the isosceles triangle. 
Thus, the point 𝑃 must be on the segment 𝐸𝐹. 
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If we argue similarly for 𝑄 (when 𝑃 is fixed and 𝐵𝑄 + 𝐶𝑄 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), then we find that 𝑄 must also be 
on the segment 𝐸𝐹.  
In conclusion, both interior points 𝑃 and 𝑄 must lie on the segment 𝐸𝐹 (as in Figure 9). ■ 
 
Our aim now is to find the exact positions of 𝑃 and 𝑄 on the segment 𝐸𝐹. 
Regardless the positions of these two points on 𝐸𝐹, we can always find a point 𝐺 on the segment 𝑃𝑄, 
such that at least one of the triangles 𝐴𝑃𝐷 and 𝐵𝐺𝐶 has all angles less than 120°. If, for example, triangle 
𝐵𝐺𝐶 has this property, then consider 𝑄’ the Fermat point for this triangle (see Figure 11). This means that  
𝐵𝑄′ +  𝐶𝑄′ +  𝐺𝑄′ =  𝑚𝑖𝑛𝑖𝑚𝑢𝑚. 

 

 
Figure 11.  Optimal position of point 𝑄 

 
As the triangle 𝐵𝐶𝐺 is isosceles, the point 𝑄’ lies on its altitude, thus 𝑄′ ∈  𝐸𝐹. 
Similarly, for the new middle segment 𝑃𝑄’, one can find a point 𝐻 on it, such that at least one of the 
triangles 𝐴𝐻𝐷 and 𝐵𝐻𝐶 has all angles less than 120°. For this triangle, we can construct the Fermat 
point 𝑃’. As a consequence, we can assert that: 
 

Proposition 5.  The optimal positions of 𝑃 and 𝑄 are the constructed Fermat points 𝑃’ and 𝑄’ in the 
previous paragraph. 
 

 
Figure 12. The optimal positions of 𝑃 and 𝑄  
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Theorem 3.  The positions on 𝐸𝐹 of the points 𝑃 and 𝑄, that guarantee the minimum cobweb length, 

are such that 𝐴𝑃𝐷̂  =  𝐵𝑄𝐶̂  =  120° (see Figure 12). 
 

Proof.   (6) 
 
First Method: 
 
However, what is the optimal form? To find out the minimum length of the spider's web we will use 𝑥 
and 𝑙, two notations to facilitate the calculations, as can be seen in the Figure 13: 

Figure 13.  The minimum length of a cobweb 
 

 
We consider 𝐴𝐵 = 𝐿 and 𝐴𝐷 =  𝑙. The cobweb length is therefore  
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Third Method: 
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The case of a parallelogram shape 
 

We considered the case when the 4 points are the vertices of a parallelogram. 

 

 
 

Figure 14.  Minimum cobweb length (drawn with magenta) for a parallelogram  
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Having the parallelogram 𝐴𝐵𝐶𝐷, where we have noted with 𝑂 the intersection of the diagonals, we 
construct the equilateral triangles 𝐴𝑂′𝐷; 𝐴𝑂𝐷′; 𝐴′𝑂𝐷; 𝐵𝑂"𝐶; 𝐵′𝑂𝐶; 𝐵𝑂𝐶′, as shown in Figure 14. 
 
We consider the two triangles formed by the diagonals in the parallelogram that have all angles less than 
120°. Let 𝑃 be the intersection of the segments 𝐴𝐴′, 𝐷𝐷′, 𝑂′𝑂", representing the Fermat point for the 
triangle 𝐴𝑂𝐷. Thus, 𝐴𝑃 + 𝑃𝑂 + 𝑃𝐷 is minimum sum for the triangle 𝐴𝑂𝐷. Let 𝑄 be the intersection of 
segments 𝐵𝐵′, 𝐶𝐶′, 𝑂′𝑂", representing the Fermat point for the triangle 𝐵𝑂𝐶. Thus, 𝐵𝑄 + 𝑂𝑄 + 𝐶𝑄 is 
minimum sum for the triangle 𝐵𝑂𝐶. 
 
We claim that: 

Theorem 4.  The positions of the points 𝑃 and 𝑄 that guarantee the minimum cobweb length inside a 
parallelogram are given by Fermat points for the triangles 𝐴𝑂𝐷 and 𝐵𝑂𝐶, respectively.  
 

Proof.    
 
As 𝑃 is Fermat point in the triangle 𝐴𝑂𝐷, we have that  

𝐴𝑃 + 𝑃𝑂 + 𝑃𝐷 <  𝐴𝑂 + 𝑂𝐷. 

Similarly,  because 𝑄 is Fermat point in the triangle BOC, we have that  

𝐵𝑄 + 𝑂𝑄 + 𝐶𝑄 <  𝐵𝑂 + 𝐶𝑂. 

By adding the last two relations, we obtain  

𝐴𝑃 + 𝑃𝐷 + 𝑃𝑄 + 𝐵𝑄 + 𝐶𝑄 <  𝐴𝐶 + 𝐵𝐷. 

If we argue in a similar way to the case of the rectangular room, we conclude that 𝐴𝑃 + 𝑃𝐷 + 𝑃𝑄 +
𝐵𝑄 + 𝐶𝑄 has the minimum cobweb length. (12)  ■ 

 

 

 

The case of a square-base regular pyramid 
 
 

We are now looking for the position of a point 𝑋 inside 
the pyramid (as shown in Figure 15), such that the total 
sum from 𝑋 to the vertices of the pyramid is minimum 
(13). If this point 𝑋 would be situate on the plane of 
𝐴𝐵𝐶𝐷, then clearly 𝑋 must be the same with the point 
𝑂, which is the intersection of rectangular diagonals.  
 
Therefore, we believe that this point must belong to the 
altitude from V, as the sum of the distances from V to 
the four vertices situated on the base is minimized 
when these distances are equal.  
We make the following notation:  
 

𝐴𝐵 =  𝑙, 𝑉𝑂 =  ℎ, 𝑋𝑂 =  𝑥. 
 

 
 

Figure 15.  A square-base 
regular pyramid VABCD 
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Then, the total sum from 𝑋 to the vertices of the pyramid is: 

XAVXXDXCXBXAVXm 4  

thus, 

.
2

2
4 2

2

xhx
l

m 













  

We attach a function to this formula,  
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In order to find the critical points of the continuous function 𝑓, we look for the points where its first 
derivative is zero: 
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(the value of x with negative sign has no geometrical relevance, as it must be a length).  
 
We evaluate the second derivative in the critical point:  
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We conclude that the critical point 
30

l
x   is a minimum point for the function f. 

Thus, the point 𝑋 is situated on the altitude 𝑉𝑂, at the distance 𝑥 from 𝑂. The minimum length of the 
cobweb is:  
 

𝑓 (
𝑙

√30
)  =  4√(

𝑙√2

2
)

2

+ (
𝑙

√30
)

2

+ ℎ −
𝑙

√30
. 

Conclusions 

At first a first glance, we thought that it would be easy to find the minimum length of a cobweb that 
Spider Webster should build in order to connect his multiple points of interest. However, we discovered 
that the cobweb of minimum length is not actually as Pythagoras said, "the straight line that holds them 
together", and that it has, in fact, a unique shape (14). Therefore, we needed to calculate a certain angle, 
which gives us the best configuration, so that we could help Webster achieve his goal. 
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Editing notes 

(1) On this figure 𝑃 is clearly not the Fermat point. 

(2) There, the authors focus on the good definition of 𝑃, i.e. that the 3 segments are concurrent. But the 
proof of "The Fermat point 𝑃 minimizes the length 𝐴𝑃 + 𝐵𝑃 + 𝐶𝑃" is still missing. This is unfortunate 
because the proof is affordable. 

(3) Yes they are collinear, due to the horizontal and vertical symmetry of Figure 7. 

(4) Indeed, if 𝑃 minimizes 𝐴𝑃 + 𝐷𝑃 + 𝑃𝑄, then among all the points 𝑃′ with fixed 𝑙𝑒𝑛𝑔𝑡ℎ 𝐴𝑃′ + 𝐷𝑃′ =
𝐴𝑃 + 𝐷𝑃, 𝑃 minimizes 𝑃′𝑄. 

(5) This is not true. Indeed, consider a case with 𝑄 is very close to 𝐴. Then in order to minimize 𝑃𝑄, P 
should move towards the bottom of the rectangle. The sequel of the proof is not valid. Here is a way to 
circumvent the problem: Imagine that 𝑄 is closer to the line (𝐸𝐹) than 𝑃 (if not, exchange the names of 
vertices). By minimality of 𝐴𝑃 + 𝐷𝑃 + 𝑃𝑄, 𝑃 is the Fermat point of triangle 𝐴𝐷𝑄. As it lies on the line 
formed by 𝑄 and the third vertex of the equilateral triangle based on 𝐴𝐷, is necessarily strictly closer to 
(𝐸𝐹) than 𝑄, which is in contradiction to the hypothesis. So 𝑃 and 𝑄 are both on 𝐸𝐹. 

(6) Here the authors provide other analytical proofs. 

(7) Strictly speaking, we need the function to be minimized on [0, 𝜋/2]. 

(8) The previous equivalence requires some tedious calculations. Here it was enough to notice that 

sin 𝛼 + √3 cosα = 2 sin(𝛼 +
𝜋

3
), so immediately is ≤ 2. 

(9) The formula is obtained thanks to the tangent half-angle formulae 

(10) Why imposing this condition? the argument is missing. 

(11) A discussion on the uniqueness of the construction would have been welcome! Indeed, if the 
rectangle is a square, there are two ways of building the cobweb, one with [𝑃𝑄] horizontal, and another 
one with [𝑃𝑄] vertical, so there is no uniqueness. But what happens for the case of a (non-square) 
rectangle for which the diagonals meet with all angles less than 120°? Again there are two ways of 
building the cobweb but are they both optimal? 

(12) Note that 𝑂, 𝑃 and 𝑄 are aligned (because the figure is invariant under the central symmetry around 
𝑂), so 𝑃𝑄 = 𝑂𝑃 + 𝑂𝑄 and the proof works.  

(13) Here the authors make the assumption of a single node. But has the optimal solution a single node? 

(14) The term "unique shape" is not clear. Indeed, each shape will have its own solution, or its own 
solutions. 
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