Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition.

L'allumeur de lampadaires

Année 2021 - 2022

Merlin Marquis, Paul Nasiadka, Timothé Claudel, Simon Pereira, élèves de Terminale, Pierre Desjour et Axel Da Silva, élèves de Seconde.

Établissements : Lycée Jean Lurçat Bruyeres et Lycée Claude Gelée Epinal

Enseignantes: Delphine FERRY et Delphine LARCHÉ

Chercheur: Vincent PIT

1. Présentation du sujet

Dans l'allée d'une ville, 10 lampadaires sont disposés en ligne numérotés de 1 à 10, ils sont éteints ou allumés chaque soir par un allumeur de lampadaires ; il les allume de la droite vers la gauche selon la règle suivante : si un lampadaire est allumé il change l'état du suivant c'est-à-dire s'il était allumé il l'éteint et s'il était éteint, il l'allume. Le premier soir seul le lampadaire numéro 1 est allumé on cherche donc au bout de combien de soirs tous les lampadaires seront allumés et dans un second temps si on peut prévoir leur comportement pour un nombre n de lampadaires.

2. Résultats

On a finalement trouvé :

- à 2ⁿ jours, il y a 2ⁿ lampadaires allumés
- au bout de 2ⁿ +1 jours, il y a 2 lampadaires allumés

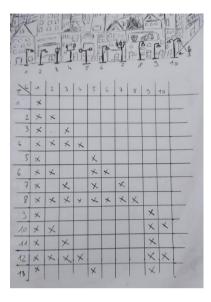
3. Cheminement expérimental

Nous avons mis en place une série d'expérimentations pour déterminer une conjecture de la loi suivie par le nombre de lampadaires allumés.

3.1. Raisonnement à partir d'un tableau

Nous avons d'abord fait des schémas de ce type :

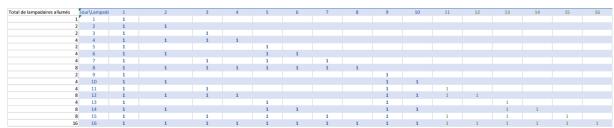
Pour s'approprier le problème, ici les croix représentent les lampadaires allumés.



3.2. Raisonnement à l'aide d'une feuille de calcul

Nous avons, par la suite, modélisé notre problème à l'aide d'une feuille de calcul car la modélisation sur papier devenait trop compliquée avec un nombre de lampadaires plus important.

Voici le type de tableau que nous avons obtenu :



Les 1 représentent les lampadaires allumés.

Pour remplir le tableur automatiquement nous avons également trouvé une formule ; dans la case D3 on entre =ABS(C2-D2) puis on l'étend horizontalement et verticalement.

Nous avons, basés sur cette modélisation, fait quelques conjectures : à 2^n jours il y a 2^n lampadaires allumés et à 2^{n+1} jours il y a 2 lampadaires allumés.

3.3. Modélisation à l'aide d'un programme

Par la suite et comme les élèves de première, nous nous sommes penchés sur la programmation sur python, pour peut-être trouver une logique et une éventuelle formule mathématique.

Voici le programme :

```
def programmedelancement (j, 1):
    lampadaires=[0 for _ in range(l)]
    lampadaires[0]=1
    for m in range(j):
        lampadaires = allumer_feux(lampadaires,l)

def inverser_statut (statut):
    return 0 if statut==1 else 1

def allumer_feux (lampadaires,l):
    print(lampadaires)
    for k in reversed(range(l)):
        if lampadaires[k]==1 and k<(l-1):
            lampadaires[k+1]=inverser_statut(lampadaires[k+1])
    return lampadaires</pre>
```

(I) représente le nombre de lampadaires et (j) le nombre de jours.

Lorsqu'on exécute ce programme, on obtient cet enchainement de listes :

```
>>> programme_de_lancement (16,16)
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]
[1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]
[1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0]
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
```

On retrouve une fois encore toutes nos conjectures.

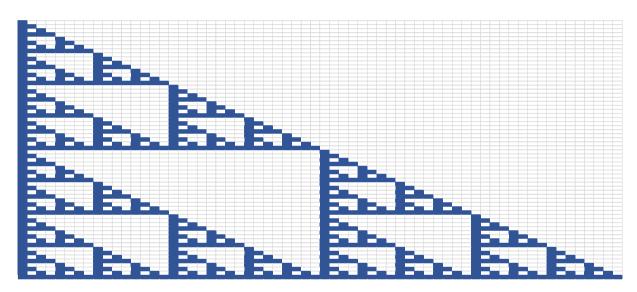
3.4. Conclusion de la phase expérimentale et réponse à la première problématique

Nous avions donc plusieurs méthodes de modélisation et sur chacune nous retrouvions bien les mêmes conjectures et la même réponse à la première problématique, à savoir que les 10 lampadaires sont tous allumés en même temps le 16 ème jour.

4. Approfondissement des conjectures, démonstrations et réponse à la 2^{ème} partie de la problématique

Nous avons également remarqué un lien avec le triangle de Sierpinsky :

Si l'on remplace les 1 par des cases colorées et les 0 par des cases blanches dans la feuille de calcul, on obtient ce genre de graphique :



On a également observé qu'en appliquant modulo 2 au triangle de Pascal on retrouvait le même enchaînement de 0 et de 1. Il y a juste un petit décalage car on part du jour un et non du jour zéro. (1)

Démonstration : (2)

<u>C</u>omme on utilise le triangle de Pascal modulo 2, on va démontrer que le développement de $(a+b)^{2^n}$ a 2 coefficients impairs, c'est-à-dire qu'il y a 2 lampadaires allumés au jour 2^n+1 (le petit décalage).

Nous avons décidé de procéder par récurrence :

On considère la propriété P_n : « il y a 2 coefficients impairs dans le développement de $(a+b)^{2^n}$ ». Montrons que P_n est vraie pour tout n de \mathbb{N} .

Initialisation:

 $(a+b)^1 = a + b$, il y a donc deux coefficients impairs, P_n est initialisée.

Hérédité:

Soit n un entier naturel tel que P_n soit vraie. Montrons que P_{n+1} est vraie c'est-à-dire : « il y a deux coefficients impairs dans le développement de $(a+b)^{2^{n+1}}$ ».

 $(a+b)^{2^{n+1}} = ((a+b)^{2^n})^2 \equiv (c_1+c_2)^2$ [2] avec c_1 et c_2 , deux entiers impairs, d'après l'hypothèse de récurrence

Or $(c_1 + c_2)^2 = c_1^2 + 2c_1c_2 + c_2^2$ d'où la propriété est héréditaire

Conclusion:

D'après l'initialisation et l'hérédité, P_n est vraie pour tout n de \mathbb{N} .

Prouvons maintenant que l'on retrouve notre autre conjecture dans le triangle de Pascal, c'est-à-dire qu'il y a 2^n lampadaires allumés au jour 2^n . Il faut montrer qu'il y a 2^n coefficients dans le développement de $(a + b)^{2^{n-1}}$ (encore et toujours le décalage).

On procède une nouvelle fois par récurrence :

On considère la propriété Q_n : « il y a 2^n coefficients impairs dans le développement de $(a+b)^{2^{n}-1}$ ». Montrons que Q_n est vraie pour tout n de \mathbb{N}^* .

Initialisation:

 $(a+b)^1 = a + b$, donc il y a bien 2^1 coefficients impairs, Q_n est initialisée.

Hérédité:

Soit n un entier naturel non nul tel que Q_n soit vraie. Montrons que Q_{n+1} est vraie ie « il y a 2^{n+1} coefficients impairs dans le développement de $(a+b)^{2^{n-1}}$ ». $(a+b)^{2^{n+1}-1}$ soit $(a+b)^{2^{n-1}}$

$$(a+b)^{2^{n+1}-1} = ((a+b)^{2^n})^2 x \frac{1}{a+b} = \frac{(a+b)^{2^n} * (a+b)^{2^n}}{a+b} = (a+b)^{2^{n-1}} x (a+b)^{2^n}$$

Or d'après $P_{n,}(a+b)^{2^n}$ a 2 coefficients impairs et d'après l'hypothèse de récurrence, $((a+b)^{2^{n}-1}$ a 2^n coefficients impairs. Comme le produit de deux nombres impairs est impair, il y a 2 x 2^n soit 2^{n+1} coefficients impairs dans le développement de $(a+b)^{2^{n+1}-1}$, la propriété Q_n est héréditaire. (3)

Conclusion : D'après l'initialisation et l'hérédité, la propriété Q_n est vraie pour tout n de \mathbb{N}^* .

On a donc démontré que nos 2 conjectures se retrouvaient dans le triangle de Pascal, on peut utiliser ce dernier pour « représenter » notre problème.

5. Conclusion

Ainsi nous pouvons en déduire que pour voir un nombre k (appartenant à N*) de lampadaires allumés, il est nécessaire d'attendre au minimum le jour 2^n avec $2^n \ge k$.

Par exemple pour 40 lampadaires, ils seront tous allumés au minimum pour 2⁶ jours soit 64 jours car 2⁶ est la puissance de 2 supérieure à 40 la plus proche.

Notes d'édition

- (1) Ceci est une observation pas une démonstration.
- Démonstration du fait que les coefficients binômiaux de $(a+b)^{2^n}$ sont tous pairs sauf deux, et que ceux de $(a+b)^{2^{n-1}}$ sont tous impairs .
- Justification insuffisante puisque $(a+b)(a+b) = (a+b)^2 = a^2 + 2ab + b^2$ n'a pas 4 termes à coefficients impairs